K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

Ta có: \(\dfrac{BD}{DC}=\dfrac{3}{7}\)

nên \(\dfrac{AB}{AC}=\dfrac{3}{7}\)

hay \(AB=\dfrac{3}{7}AC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{9}{49}+AC^2=20^2=400\)

\(\Leftrightarrow AC^2=\dfrac{9800}{29}\)

\(\Leftrightarrow AC=\dfrac{70\sqrt{58}}{29}\left(cm\right)\)

\(\Leftrightarrow AB=\dfrac{3}{7}\cdot AC=\dfrac{30\sqrt{58}}{29}\left(cm\right)\)

5 tháng 8 2021

Bài 3: 

undefined

undefined

5 tháng 8 2021

Bài 5: 

undefined

Xét ΔABC vuông tại A

Áp dụng Pytago ta có:

BC2 = AB2 + AC2 

= 242 + 322

BC = 40

DE là trung trực của BC

⇒ E là trung điểm của BC; DE vuông góc với BC tại E

⇒ EC = BC/2 = 40/2 = 20

Xét ΔCED và ΔCAB có:

∠CED = ∠CAB = 90o

∠C chung

⇒ ΔCED đồng dạng ΔCAB

⇒ CE/CA = ED/AB

⇒ 12/32 = ED/24

⇒ ED = 9

4 tháng 8 2021

bài 4 thiếu câu nha mn 

a, tính ME,CE

b, Chứng minh AB2=AM.AC

21 tháng 4 2018

Tương tự HS tự làm

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)