K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

a)Gọi 2 số tự nhiên liên tiếp đó lần lượt là a;a+1

Ta có:

a(a+1) chia hết 2 ( vì a ; a+1 là số liên tiếp nên có 1 số là số chẵn và 1 số là số lẻ)

b)Vì n chia hết n nên tích n số tự nhiên liên tiếp chia hết b

c,d ....

18 tháng 12 2016

Cam on bn

4 tháng 12 2021

ousbdl

jvdajnvjl

nsdg

ouhqer

kgkrebvjdsjb

vq

wjkgb

Fbovafbeuonasf

21 tháng 11 2014

đâu phải tích của 2 số đều chia hết cho 2 đâu

21 tháng 11 2014

sao tích 2 số tự nhiên lại chia hết cho 2 . VD 3*5 =15 đâu chia hết cho 2. đúng ra phải là 2 số tự nhiên liên tiếp chứ!!!

31 tháng 10 2017

Ta có  trong hai số tự nhiên liện tiếp thì lúc nào cũng có một số chẵn và một số lẻ số chẵn đó sẽ chia hết cho 2 (đpcm)
b, 3 số tự nhiên liên tiếp sẽ có dangh 3k;3k+1;3k+2(với k thuộc N)
      Tích của 3 số đó là : 3k + 3k+1 +3k +2 = 3.(3k+3) chia hết cho 3( đpcm)

31 tháng 10 2017

a)Gọi 2 số tự nhiên liên tiếp đó là a và b 

Do là 2 STN liên tiếp nên a hoặc b sẽ là số chẵn

=> ab chia hết cho 2

 Vậy.............................

b) Gọi 3 số tự nhiên liên tiếp là 3k; 3k+1; 3k+2  ( k \(\in\) N)

 Mà 3k luôn chia hết cho 3

=> 3k(3k+1)(3k+2) luôn chia hết cho 3

     Vậy......................................

2 tháng 10 2016

a . Ta có : Vì hai số liên tiếp chiaheets cho 2 

=> số lẻ x số chẵn sẽ chia hết cho 2

vì 1 số chẵn x bất kì số nào cũng là số chẵn

13 tháng 10 2018

Gọi 2 số nguyên liên tiếp là:  và  a+1

Tích của chúng là:  A  =  a(a+1)

  • Nếu:  a = 2k thì chia hết cho 2  
  • Nếu:  a = 2k+1 thì:  a+1 = 2k+2   chia hết cho 2  =>  A  chia hết cho 2

=>  đpcm

10 tháng 7 2015

a) Gọi 2 số tự nhiện liên tiếp là n; n+1 

Ta có: 

Nếu n có dạng 2k thì n.(n+1) 

= 2k.(2k+1) chia hết cho 2 (vì 2k chia hết cho 2)

Nếu n có dạng 2k + 1 thì n.(n+1) 

= (2k+1).(2k+1+1)

= (2k+1).(2k+2) chia hết cho 2 (vì 2k+2 chia hết cho 2)

b) Gọi 3 số tự nhiên liên tiếp là n;n+1;n+2 

Ta có: 

Nếu n có dạng 3k thì n.(n+1).(n+2) 

= 3k.(3k+1).(3k+2) chia hết cho 3 (vì 3k chia hết cho 3)

Nếu n có dạng 3k+1 thì n.(n+1).(n+2) 

= (3k+1).(3k+1+1).(3k+2+1)

= (3k+1).(3k+2).(3k+3) chia hết cho 3 vì (3k+3 chia hết cho 3) 

Nếu n có dạng 3k+2 thì n.(n+1).(n+2) 

= (3k+2).(3k+2+1).(3k+2+2)

= (3k+2).(3k+3).(3k+4) chia hết cho 3 (vì 3k+3 chia hết cho 3) 

 

10 tháng 7 2015

Cứ li ke ủng hộ chú ấy mỏi tay :D