Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(2a+1\right)^2>\left(2a+1\right)^2-1\)
\(\Leftrightarrow\left(2a+1\right)^2>2a.\left(2a+2\right)\)
\(\Rightarrow\frac{1}{\left(2a+1\right)^2}< \frac{1}{2a.\left(2a+2\right)}\)(*)
ĐẶT \(A=\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{\left(2a+1\right)^2}\)
Áp dụng (*), ta có:
\(A< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2a.\left(2a+2\right)}\)
\(\Leftrightarrow A< \frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2a.\left(2a+2\right)}\right)\)
\(\Leftrightarrow A< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2a}-\frac{1}{2a+2}\right)\)
\(\Leftrightarrow A< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{2a+2}\right)\)
\(\Leftrightarrow A< \frac{1}{4}-\frac{1}{4a+4}< \frac{1}{4}\)
Vậy ..........
Có : 3^2 = 2.4+1
5^2 = 4.6 +1
..........
(2a+1)^2 = 2a.(2a+2)+1
=> VT < 1/2.4 + 1/4.6 + .... + 1/2a.(2a+2)
2VT < 2/2.4 + 2/4.6 + .... + 2/2a.(2a+2)
= 1/2 - 1/4 + 1/4 - 1/6 + ..... 1/2a - 1/2a+2 = 1/2 - 1/2a+2 < 1/2
=> VT < 1/2 (ĐPCM)
Lời giải:
Chứng minh vế thứ nhất:
Với mọi số tự nhiên $i< n$ ta có: $\frac{1}{n+i}> \frac{1}{n+n}$. Thay $i=1,2,...$ ta có:
$\frac{1}{n+1}>\frac{1}{n+n}$
$\frac{1}{n+2}>\frac{1}{n+n}$
.....
Do đó: $\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}>\frac{1}{n+n}+\frac{1}{n+n}+...+\frac{1}{n+n}=\frac{n}{n+n}=\frac{1}{2}$
(đpcm)
Vế thứ hai có vẻ không đúng lắm, vì $n$ càng tăng thì giá trị của tổng càng tăng theo nên mình nghĩ khi $n$ tiến tới vô cực thì tổng trên cũng vượt khỏi $\frac{3}{4}$
Đặt \(S=\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{200!}\)
\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{199.200}\)
\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{199}-\frac{1}{200}\)
\(\Rightarrow S< 1-\frac{1}{200}< 1\)
\(\Rightarrow S< 1\)( đpcm )