Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề sai bn nhé
Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1
Đơn giản thôi:
Xét n=3k=> n^2=9k^2 chia hết cho 3
Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1
Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1
Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.
b) Có mn(m^2-n^2)
=mn(m-n)(m+n)
Nếu m hoặc n chia hết cho 3 thì xong luôn
Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3
Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3
Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3
câu b
2xn +11...1 n chữ số 1 = 3n-n+11...1
=3n+(11....1-n)
Ta thấy tổng các chữ số của 11...1 là n
=> 11...1 và n có cùng một số dư
=>(111...1-n) chia hết cho 3
Mà 3n chia hết cho 3
=>3n+(11...1-n) chia hết cho 3
Hay 2n +111...1 chia hết ch03
Vậy 2n+111....1 chia hết cho 3
Có mí chỗ mk không ghi là n chữ số 1 bạn ghi hộ mk nhé
Ta có:
\(A=10^n+2=10...00\left(n\text{ chữ số 0}\right)+2.\)
\(=10...02\left(n-1\text{ chữ số 0}\right)\)
Mà theo dấu hiệu nhận biết chia hết cho 3 thì: 1+2 =3 chia hết cho 3
Vậy ....
1)
n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
2)
Bạn làm tương tự nha!
ĐỀ BÀI SAI RỒI BẠN !
Thầy mình ra bài này mà