K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Thống nhất biểu thức là $A=n^4+5n^2+9$ bạn nhé, không phải $x$.

Lời giải:
Giả sử $n^4+5n^2+9\vdots 121$

$\Rightarrow n^4+5n^2+9\vdots 11$

$\Rightarrow n^4+5n^2-11n^2+9\vdots 11$

$\Rightarrow n^4-6n^2+9\vdots 11$

$\Rightarrow (n^2-3)^2\vdots 11$

$\Rightarrow n^2-3\vdots 11$

Đặt $n^2-3=11k$ với $k$ nguyên

Khi đó: $n^4+5n^2+9=(11k+3)^2+5(11k+3)+9=121k^2+121k+33\not\vdots 121$ (trái với giả sử)

Vậy giả sử là sai. Tức là với mọi số nguyên $n$ thì $n^4+5n^2+9$ không chia hết cho $121$

13 tháng 2 2016

Giả sử ta có :n = 2 =>(n-1)(n+2)+2 không chia hết cho 9

=>(n-1)(n+2)+2 không chia hết cho 9 với mọi n !!!!!!!

Chắc chắn đúng !!!!!!!!!!!!!!

Ủng hộ mình nha bạn ơi !!!!!!!!!!!!!!!!!!!

22 tháng 11 2015

Ta có n² + n + 1 = n² + ( n + 1) = n(n+1) + 1 


+ Giả sử : n chia hết cho 9 
=> n² chia hết cho 9 
=> (n + 1) không chia hết cho 9 
=> n² + ( n + 1) không chia hết cho 9 

+ Giả sử : ( n + 1) chia hết cho 9 
=> n(n+1) chia hết cho 9 
=> n(n+1) + 1 không chia hết cho 9 
=> n² + ( n + 1) không chia hết cho 9

3 tháng 8 2017

Ta có:(n+2)(n-2)+12 

Áp dụng hàm đảng thức vào biểu thức ta được:

n^2-2^2+12=n^2-4+12=n^2+8.

Xét trường hợp n^2 chia hết cho 9 thì:

n^2+8=9k+8(k thuộc Z)

=>n^2+8 chia cho 9 dư 1.

Xét trường hợp n^2 ko chia hết cho 9 thì:

n^2+8=9h+m+8(m=1,2,3,4,5,6,7,8)

Ta xét các trường hợp m=1,2,3,4,5,6,7,8

=>m=2,3,4,5,6,7,8 thì n^2+8 ko chia hết cho 9

Và m=1 thì n^2+8 chia hết cho 9(loại)

Vậy với mọi trường hợp thì (n+2)(n-2)+12 ko chia hết cho 9 (trừ tường hợp bị loại)

27 tháng 6 2016

a) Ta lam theo cach quy nap, Dat n=k

\(n^2+11n-10=k^2+11k-10\)khong chia het cho 49

Ta phai chung minh cung dung voi k+1

Ta co: \(\left(k+1\right)^2+11\left(k+1\right)-10=k^2+2k+1+11k+11-10=k^2+13k+2\)

\(=k^2+2\times k\times\frac{13}{2}+\frac{169}{4}-\frac{169}{4}+2=\left(k+\frac{13}{2}\right)^2-40,25\) khong chia het cho 49

=> DPCM

28 tháng 11 2017

Giả sử A = n^2 + 3n + 5 chia hết cho 121 
=> 4A = 4n^2 + 12n + 20 chia hết cho 121 
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1) 
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11) 
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11 
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11 
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2) 
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí) 
Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N

28 tháng 11 2017

Gỉa sử tồn tại số tự nhiên n thỏa n2+3n+5n2+3n+5⋮⋮121.

=>4(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮1214(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮121.

Mặt khác, n2+3n+5n2+3n+5 ⋮ 11 (vì chia hết cho 121) => (2n+3)^2⋮ 11

mà 11 là số tự nhiên nguyên tố nên (2n+3)^2 ⋮ 121

=> (2n+3)^2+11  ko chia hết chia het cho 121

1 tháng 2 2017

( n - 1 ) ( n + 2 ) + 12 ( khong chia het cho 9 ) - Online Math

Đó mk kiếm đc đó

Tick cho mình

1 tháng 2 2017

Mình cũng có 1 câu hỏi giống như thế này nhưng không biết giải

You and I has the same a life

20 tháng 1 2016

bạn xét các trường hợp n=9k, 9k+1, 9k+2, 9k+3, 9k+4, 9k+5, 9k+6, 9k+7, 9k+8