Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 4 số tự nhiên liên tiếp đó là : n; n + 1; n + 2; n + 3
ta có
n(n + 1)(n + 2)(n + 3) + 1
= n(n + 3)(n + 1)(n + 2) + 1
= (n² + 3n)(n² + 3n + 2) + 1
= (n² + 3n)² + 2(n² + 3n) + 1
= (n² + 3n + 1)² (đpcm)
Tại sao chúng ta cứ phải chứng minh điều mà ai nhìn vào cũng thấy???
Lời giải:Gọi tổng bình phương của 5 số tự nhiên liên tiếp là:
$T=a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2$
$T=5a^2+20a+30=5(a^2+4a+6)=5[(a+2)^2+2]$
Vì $(a+2)^2$ là scp nên chia 5 dư $0,1,4$. Do đó $(a+2)^2+2$ chia $5$ dư $1,2,3$
$\Rightarrow T$ chia hết cho $5$ nhưng không chia hết cho $25$ nên $T$ không phải là scp.
Ta có đpcm.
Gọi 5 số bình phương các số liên tiếp là : a2 ; (a+1)2;(a+2)2;(a+3)2;(a+4)2
Vậy tổng là:
a2 + (a+1)2+ (a+2)2 + (a+3)2 + (a+4)2= 5a2+1+4+9+16=5a2+30
Gọi 5 số tự nhiên liên tiếp là n-2;n-1;n;n+1;n+2
Ta có A=(n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2
=5n^2+10=5(n^2+2)
n^2 không tận cùng là 3;8 =>n^2+2 không tận cùng là 0 hoặc 5 =>n^2+2 không chia hết cho 5
=>5(n^2+2) không chia hết cho 25 => A không phải là số chính phương
Gọi 5 số tự nhiên liên tiếp đó là n – 2, n – 1, n, n +1, n + 2 ( n € N, n >2).
Ta có (n – 2)2 + ( n – 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5 . (n2 + 2)
Vì n2 không thể tận cùng bởi 3 hoặc 8 do đó n2 + 2 không thể chia hết cho 5
=> 5. (n2 + 2) không là số chính phương hay A không là số chính phương (đpcm).
gọi 2 số tự nhiên liên tiếp đó là n và n+1
Tích hai số đó là n.(n+1)
Mà n.n<n.(n+1)<(n+).(n+1)
Hay n2<n.(n+1)<(n+1)2
=> n(n+1) không thể là số chính phương
Gọi 2 số tự nhiên liên tiếp là a và a+1(a thuoc N*)
Ta có: a(a+1)=axa + a
=a2 + a
=> a^2 + a không phải là số chính phương. Hay a(á+1) không phải là số chính phương.(dpcm)
Bạn vào Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath