K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2015

Ta có n(n+1) chia hết cho 2 với mọi n E N.

Với n=3k ta có 3k(3k+1)(6k+1) chia hết cho 3 và tích chia hết cho 6

n=3k+1 ta có (3k+1)(3k+2)(6k+3)=3(3k+1)(3k+2)(2k+1) chia hết cho 6

n=3k+2 ta có (3k+2)(3k+3)(6k+5)=3(3k+2)(k+1)(6k+5) chia hết cho 6. kết hợp các điều trên ta có đpcm

 

17 tháng 7 2017
 

Ta có n(n+1) chia hết cho 2 với mọi n E N.

Với n=3k ta có 3k(3k+1)(6k+1) chia hết cho 3 và tích chia hết cho 6

n=3k+1 ta có (3k+1)(3k+2)(6k+3)=3(3k+1)(3k+2)(2k+1) chia hết cho 6

n=3k+2 ta có (3k+2)(3k+3)(6k+5)=3(3k+2)(k+1)(6k+5) chia hết cho 6. kết hợp các điều trên ta có đpcm

k nha ban hien  

  
17 tháng 7 2018

a) \(\left(5n+7\right)\left(4n+6\right)\)

\(=\left(5n+7\right)4n+\left(5n+7\right)6\)

\(=20n^2+28n+30n+32\)

\(=20n^2+58n+32\)

\(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)

b) \(\left(8n+1\right)\left(6n+5\right)\)

\(=\left(8n+1\right)6n+\left(8n+1\right)5\)

\(=48n^2+6n+40n+5\)

\(=48n^2+46n+5\)

\(\left(48n^2+46n\right)⋮2\)\(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)

c) \(n\left(n+1\right)\left(2n+1\right)\)

\(=n\left(n+1\right)\left(n-1+n-2\right)\)

\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)

Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\)\(n\left(n+1\right)\left(n+2\right)⋮6\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)

7 tháng 12 2019

a/

+ Nếu n chẵn (n+10) chẵn => n+10 chia hết cho 2 => (n+10)(n+15) chia hết cho 2

+ Nếu n lẻ thì (n+15) chẵn => n+15 chia hết cho 2 => (n+10)(n+15) chia hết cho 2

b/ 

n(n+1)(2n+1) chi hết cho 6 khi đồng thời chia hết cho 2 và cho 3

+ Nếu n chẵn => n(n+1)(2n+1) chia hết cho 2

+ Nếu n lẻ => n+1 chẵn => n+1 chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2

=> n(n+1)(2n+1) chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 => n+2 chia hết cho 3 => 2(n+2)=2n+4=2n+1+3 chia hết cho 3 mà 3 chia hết cho 3 => 2n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

=> n(n+1)(2n+1) chia hết cho 3 với mọi n

=> n(n+1)(2n+1) chia hết cho 6 vơi mọi n

c/

n(2n+1)(7n+1) chia hết cho 6 khi đồng thời chia hết cho 2 và cho 3

+ Nếu n chẵn => n chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2

+ Nếu n lẻ => 7n lẻ => 7n+1 chẵn => 7n+1 chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2

=> n(2n+1)(7n+1) chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => 10(n+1)=10n+10=(7n+1)+(3n+9)=(7n+1)+3(n+3) chia hết cho 3

Mà 3(n+3) chia hết cho 3 => 7n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 chứng minh tương tự câu (b) => 2n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

=> n(2n+1)(7n+1) chia hết cho 3 với mọi n

=> n(2n1)(7n+1) chia hết cho 6 với mọi n

6 tháng 3 2015

n.(n+1) là tích 2 số tự nhiên liên tiếp chia hết cho 2

suy ra n.(n+1).(2n+1) chia hết cho 2 

trong phép chia cho 3 chỉ có 3 loại số dư là 0,1,2

nếu n=3k (k thuộc Z) thì n chia hết cho 3  suy ra tích chia hết cho 3

nếu n=3k+1 thì 2n+1 =2.(3k+1)+1=6k+3 chia hết cho 3 suy ra tích chia hết cho 3 

nếu n =3k+2 thì n+1 =3k+3 chia hết cho 3 suy ra tích chia hết cho 3 

tích luôn luôn chia hết cho 2 và 3 với mọi n thuộc Z

mà (2,3)=1 suy ra tích chia hết cho 6