K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

vì p là SNT lớn lơn 3 => p có dạng: 3k+1 hoặc 3k+2( k thuộc N*)

TH1: p=3k+1

=> 2p+1=2.(3k+1)+1=6k+2+1=6k+3 chia hết cho 3 ( TM)

TH2: p=3k+2

=> 4p+1=4.(3k+2)+1=12k+8+1=12k+9 chia hết cho 3(TM)

vậy nếu p là SNT lớn hơn 3 và  2p+1 cũng là số nguyên tố thì 4p+1 là hợp số

10 tháng 8 2015

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì $$ chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó $$ chia hết cho 3.

Vậy 4p+1 là hợp số,

3 tháng 1 2016

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó chia hết cho 3.

Vậy 4p+1 là hợp số, 

8 tháng 8 2015

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì \(2p+1=2\left(3k+1\right)+1=6k+3\) chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó \(4p+1=4\left(3k+2\right)+1=12k+9\) chia hết cho 3.

Vậy 4p+1 là hợp số,

10 tháng 8 2015

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì $2p+1=2\left(3k+1\right)+1=6k+3$2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó $4p+1=4\left(3k+2\right)+1=12k+9$4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,

12 tháng 12 2016

Bạn có 2 cách làm đó là giả sử và thử. Mình sẽ làm cách thử. Bạn thử xem lại đề nhé xem nó là các số nguyên tố nhỏ hơn 5 đùng không

Với p=0 => 2p+1=1 (loại)

Với p=1 => 2p+1=3. Khi đó 4p+1=5 là số nguyên tố

Với p=2 => 2p+1=5.Khi đó 4p+1=9 là hợp số

Các trường hợp sau bạn tự làm nhé !

17 tháng 7 2015

Với p=3 =>p-1=23 (thỏa mãn)

                 8p+1=25(loại)

Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3

mà (8p-1)p(8p+1)là tích của 3 số tự nhiên liên tiếp 

Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3 

=> 8p+1 chia hết cho 3

mà 8p+1>3 

=>8p+1 là hợp số (ĐPCM)