Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì A chia hết cho 5
=> 2x + 3y chia hết cho 5 hoặc 3x + 2y chia hết cho 5
TH1: Với 2x + 3y chia hết cho 5
=> 2x + 3y + 10x + 5y chia hết cho 5(10x ; 5y chia hết cho 5)
=> 12x + 8y chia hết cho 5
4(3x + 2y) chia hết cho 5
Mà UCLN(4;5) = 1
Do đó 3x + 2y chia hết cho 5
Vì 3x + 2y và 2x + 3y đều chia hết cho 5
=> A chia hết cho 52 = 25
TH2: 3x + 2y chia hết cho 5
3x + 2y +5x + 10y chia hết cho 5 (5x ; 10y chia hết cho 5)
8x + 12y chia hết cho 5
4(2x + 3y) chia hết cho 5
Mà UCLN(4 ; 5) = 1
=> 2x + 3y chia hết cho 5
Vì 2x + 3y và 3x+ 2y đều chia hết cho 5
=> A chia hết cho 52 = 25
Từ TH1 và TH2 => ĐPCM (điều phải chứng minh)
Giả sử 3x+5y3x+5y⋮ 77
⇒ 3x+5y−3(x+4y)3x+5y−3(x+4y)⋮ 77
⇔ −7y−7y⋮ 77
⇒ Luôn đúng
⇒ 3(x+4y)3(x+4y)⋮ 77
⇒ x+4yx+4y⋮ 77
⇒ (3x+5y)(x+4y)(3x+5y)(x+4y)⋮ 7.77.7
hay (3x+5y)(x+4y)(3x+5y)(x+4y)⋮ 4949
Giả sử x+4yx+4y⋮ 77
⇒ 3(x+4y)3(x+4y)⋮ 77
⇒ 3(x+4y)−3x−5y3(x+4y)−3x−5y⋮ 77
⇒ 7y7y⋮ 77
⇒ 3x+5y3x+5y⋮ 77
⇒ (3x+5y)(x+4y)(3x+5y)(x+4y)⋮ 7.77.7
hay (3x+5y)(x+4y)(3x+5y)(x+4y)⋮ 49
Ta có: a, b là các số tự nhiên không chia hết cho 5
=> Chữ số cuối cùng các số a, b có thể là 1, 2, 3, 4, 6, 7, 8,9
mà 1^4=1, 2^4=16, 3^4 =81, 4^4=256, 6^41296,...
=> Như vậy chữ số tận cùng các sô a^4 và b^4 là 1 hoặc 6
=> Chữ số tận cùng các số a^4m, b^4m là 1 hoặc 6
=> Chữ số tận cùng các số a^4m -1 và b^4m -1 là 0 hoặc 5
=> \(\hept{\begin{cases}a^{4m}-1⋮5\\b^{4m}-1⋮5\end{cases}\Rightarrow}\hept{\begin{cases}x\left(a^{4m}-1\right)⋮5\\y\left(b^{4m}-1\right)⋮5\end{cases}}\)
=> \(x\left(a^{4m}-1\right)+y\left(b^{4m}-1\right)⋮5\Rightarrow xa^{4m}+yb^{4m}+\left(x+y\right)⋮5\Rightarrow xa^{4m}+yb^{4m}⋮5\)vì x+y chia hết cho 5
Hoặc nếu em đã được học kiến thức đồng dư:
a, b là các số không chia hết cho 5
=> a^4 , b^4 có chữ số tận cùng là 1, 6
=> a^4m, b^4m có chữ số tận cùng 1, 6
=> \(\hept{\begin{cases}a^{4m}\equiv1\left(mod5\right)\\b^{4m}\equiv1\left(mod5\right)\end{cases}\Leftrightarrow}\hept{\begin{cases}x.a^{4m}\equiv x\left(mod5\right)\\y.b^{4m}\equiv y\left(mod5\right)\end{cases}\Rightarrow x.a^{4m}+y.b^{4m}\equiv x+y\equiv}0\left(mod5\right)\)
n2+n+1 = n(n+1) + 1
vì n(n+1) là tích của hai số tự nhiên liên tiếp nên n(n+1) + 1 là số lẻ
n(n+1) + 1 ko chia hết cho 4 (ĐPCM)
vì tích hai số liên tiếp có tận cùng là 0;2;6
=> n(n+1) có tận cùng 1 trong số 0;2;6 => n(n+1) +1 có tận cùng 1 trong số 1;3;7 ko chia hết cho 5(đpcm)
Giả sử như mệnh đề trên đúng :
n^2+1 chia hết cho 4
* Nếu n chẵn : n = 2k , k thuộc N
=> n^2 +1 = 4k^2 +1 k chia hết cho 4
* nếu n lẻ : n = 2k + 1
=> n^2 +1 = 4k^2 +4k +2
=> n^2 +1 = 4k(k+1)+2
k , k +1 là 2 số tự nhiên liên tiếp
=> k(k+1) chia hết cho 2
=> 4k(k+1)chia hết cho 4
=> 4k(k+1)+2 chia cho 4 , dư 2
=> 4k (k+1)+2 k chia hết cho 4
a) ta có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\)
\(D=\frac{4x-5y}{3x+4y}=\frac{3y-5y}{3y+4y-x}=\frac{-2y}{7y-x}=\frac{-2y}{7y-y3:4}\)
\(=\frac{-2y}{\frac{25}{4}y}=-2y:\left(\frac{25}{4}y\right)=-\frac{8}{25}\)
b) ta có: M=3x.(x-y) chia hết cho 11
N = y2 - x2 = y2 - xy - x2 + xy = y.(y-x) - x.(x-y) = (y-x).(y+x) = - (x-y).(y+x) chia hết cho 11
=> M-N chia hết cho 11 (đpcm)
\(A=1^n+2^n+3^n+4^n\)
n không chia hết cho 4 thì n chỉ có thể có các số dư: 1; 2; 3 khi chia cho 4.
Ta lập bảng chữ số tận cùng
n | n=4k+1 | n=4k+2 | n=4k+3 |
1n | 1 | 1 | 1 |
2n | ...2 | ...4 | ...8 |
3n | ...3 | ...9 | ...7 |
4n | ...4 | ...6 | ...4 |
A=1n+2n+3n+4n | ...0 | ...0 | ...0 |
A luôn có tận cùng là 0 nên A chia hết cho 10 => A chia hết cho 5 - đpcm
a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4
Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4
= (a+a+a+a+a) + (1+2+3+4)
= 5a + 10
= 5(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên chia hết cho 5
ta có :
7 . ( x + 2y ) + 3x - 4y = 7x + 14y + 3x - 4y = 10x + 10y chia hết cho 5
mà x + 2y chia hết cho 5
=> 7 . ( x + 2y ) chia hết cho 5
=> 3x - 4y chia hết cho 5
3x-4y=3x+6y-6y-4y=3(x+2y)-10y
x+2 chia hết cho 5=>3(x+2y)chia hết cho 5 (1)
10 chia hết cho 5 =>10y chia hết cho 5 (2)
từ (1) và (2) =>3(x+2y)-10y chia hết cho 5 hay 3x-4y chia hết cho 5=>đmcp