Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a1+a2+a3+...+an \(\equiv\) 0(mol 30)
=> a1+a2+a3+...+an chia hết cho 30
Ta lại có:
a1 \(⋮\)30 => a1.a1.a1.a1.a1 \(⋮\)30
a2 \(⋮\)30=> a2.a2.a2.a2.a2 \(⋮\)30
a3 \(⋮\)30=> a3.a3.a3.a3.a3 \(⋮\)30
.....
an \(⋮\)30=> an.an.an.an.an \(⋮\)30
Cộng vế với vế ta có:
ĐPCM
Ta có: p2-1 =(p-1)(p+1)
Vì (p-1)p(p+1) là tích 3 stn liên tiếp
=> chia hết cho 3
Mà p không chia hết cho 3 (do p nguyên tố > 3)
=>(p-1)(p+1) chia hết cho 3. (1)
Ta có p là snt >3
=>p lẻ
=>p-1 và p+1 là 2 stn chẵn liên tiếp
=>(p-1)(p+1) chia hết cho 8 (2)
Từ (1) và (2) và (8,3)=1
=>p2-1 chia hết cho 24
=> p2 đồng dư 1 ( mod 24)
a\(\equiv\)b(mod m)<=>a=uk+m và b=vk+m
<=>ac=uk.c+m.c và bc=vk.c+m.c
<=>ac-bc=uk.c+m.c-vk.c-m.c=uk.c-vk.c
<=>ac\(\equiv\)bc(mod cm)