Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)9a+6b=(9+60)*(a+b)=15*(a+b)
vì 15 : 15 nên a+b cũng chia hết cho 15
điều ngược lại thì mk 0 hiểu
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
718 + 18.3 - 1 = (73)6 + 9.2.3 - 1 = 3436 + 9.6 -1 = 3436 - 1 + 9.6
Vì 343 chia 9 dư 1 => 3436 chia 9 dư 1 => (3436 - 1) chia hết cho 9
Mà 9.6 chia hết cho 9 => 718 + 18.3 -1 chia hết cho 9
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155
ta có 301293 - 1 chia hết cho 9
chứng minh rồi
3012^93 chia hết cho 9 vì 3012^93 chia 9 dư 1 => 3012^93-1 chia hết cho 1
chứng minh rồi nha