K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2017

Nếu: m chẵn , n lẻ thì m + 2n + 1 chẵn => (m+2n+1)(3m-2n+2) chẵn (1)

Nếu: m lẻ , n chẵn thì m + 2n + 1 chẵn => (m+2n+1)(3m-2n+2) chẵn (2)

Nếu: m, n đều lẻ m + 2n + 1 chẵn => (m+2n+1)(3m-2n+2) chẵn (3)

Nếu: m,n đều chẵn 3m-2n+2 chẵn => (m+2n+1)(3m-2n+2) chẵn (4)

Từ (1),(2),(3),(4) suy ra với mọi m,n \(\in\) N thì A = (m+2n+1)(3m-2n+2) là số chẵn

26 tháng 8 2018

Ta có: \(\left(2n-1\right)^3-2n+1=\left(2n-1\right)^3-\left(2n-1\right)\)

\(=\left(2n-1\right)\left(4n^2-4n+1-1\right)\)

\(=4n\left(n-1\right)\left(2n-1\right)\)

Ta có: \(4⋮4\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮4\) (1)

Mà \(n\left(n-1\right)\) là 2 số tự nhiên liên tiếp nên chia hết cho 2

\(\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮2\) (1)

Từ (1) và (2):

\(\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮8\)

Hay: \(A⋮8\)

=.= hok tốt!!

3 tháng 10 2020

Đề là chứng minh N < 1/4 sẽ đúng hơn

Ta có :

\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(\Rightarrow2^2.N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

Ta lại có :

\(4N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{n}\)

\(\Rightarrow N< \left(1-\frac{1}{n}\right):4=\frac{1}{4}\left(1-\frac{1}{n}\right)\)

Mà \(n\in N;n\ge2\)=> 1 -\(\frac{1}{n}\)< 1

=> \(N< \frac{1}{4}\left(1-\frac{1}{n}\right)< \frac{1}{4}\)

=> \(N< \frac{1}{4}\)( đpcm )

4 tháng 10 2020

Thank you very much

a: =>5x+1=6/7 hoặc 5x+1=-6/7

=>5x=-1/7 hoặc 5x=-13/7

=>x=-1/35 hoặc x=-13/35

b: =>x-2/9=4/9

=>x=6/9=2/3

c: =>8x+1=5

=>8x=4

hay x=1/2

14 tháng 9 2021

c)\(7^{2n}+7^{2n+2}=2450\)

\(7^{2n}+7^{2n}.7^2=2450\)

\(7^{2n}.50=2450\)

\(7^{2n}=49\)\(=7^2\)

⇒2n=2

⇒n=1

14 tháng 9 2021

a)\(\left(-\dfrac{1}{5}\right)^n=-\dfrac{1}{125}\)                   b)\(\left(-\dfrac{2}{11}\right)^m=\dfrac{4}{121}\)

\(\left(-\dfrac{1}{5}\right)^n=\left(-\dfrac{1}{5}\right)^3\)                    \(=\left(-\dfrac{2}{11}\right)^m=\left(-\dfrac{2}{11}\right)^2\)

⇒n=3                                          ⇒m=2

31 tháng 8 2020

Bài 1 : https://h.vn/hoi-dap/question/576866.html

Bài 2 : https://h.vn/hoi-dap/question/781198.html

Tham khảo nhé .Đang bận ko làm đc

10 tháng 9 2017

b) \(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)

\(\Rightarrow\left(x-\dfrac{2}{9}\right)^3=\left[\left(\dfrac{2}{3}\right)^2\right]^3=\left(\dfrac{4}{9}\right)^3\)

\(\Rightarrow x-\dfrac{2}{9}=\dfrac{4}{9}\)

\(\Rightarrow x=\dfrac{2}{3}\)

10 tháng 9 2017

\(\text{làm hộ mik câu a bạn nha}\)

30 tháng 11 2018

Ta có :

\(A=n^6-n^4+2n^3+2n^2\)

\(A=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)

\(A=n^4\left(n+1\right)\left(n-1\right)+2n^2\left(n+1\right)\)

\(A=n^2\left(n+1\right).\left[n^2\left(n-1\right)+2\right]\)

\(A=n^2\left(n+1\right).\left(n^3-n^2+2\right)\)

\(A=n^2\left(n+1\right).\left(n^3+1+1-n^2\right)\)

\(A=n^2\left(n+1\right).\left(n+1\right).\left(n^2-n+1-n+1\right)\)

\(A=n^2\left(n+1\right)^2.\left(n^2-2n+2\right)\)

Với \(n\in N\), n > 1 thì \(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)

\(n^2-2n+2=n^2-2\left(n-1\right)< n^2\)

\(\Rightarrow\left(n-1\right)^2< n^2-2n+n< n^2\)

Vậy A không phải số chính phương