Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(K=-\dfrac{1}{2}x^2-x-1=-\dfrac{1}{2}\left(x^2+2x+1\right)-\dfrac{1}{2}\)
\(K=-\dfrac{1}{2}\left(x+1\right)^2-\dfrac{1}{2}\)
Do \(\left(x+1\right)^2\ge0\Rightarrow-\dfrac{1}{2}\left(x+1\right)^2\le0\Rightarrow-\dfrac{1}{2}\left(x+1\right)^2-\dfrac{1}{2}< 0\) ; \(\forall x\)
\(\Rightarrow K< 0\) với mọi x
\(K=\dfrac{-1}{2x^2-x-1}\)
\(=\dfrac{-1}{2x^2-2.\dfrac{1}{2\sqrt{2}}.\sqrt{2}x+\left(\dfrac{1}{2\sqrt{2}}\right)^2+\dfrac{9}{8}}\)
\(=\dfrac{-1}{\left(\sqrt{2}x+\dfrac{1}{2\sqrt{2}}\right)^2+\dfrac{9}{8}}\)
Biểu thức dưới mẫu luôn luôn dương
=> Giá trị của K < 0
\(D=-x^2-y^2+2x+2y-3\)
\(D=-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-1\)
\(D=-\left(x-1\right)^2-\left(y-1\right)^2-1\)
Ta thấy \(-\left(x-1\right)^2< 0;-\left(y-1\right)^2< 0\forall x;y\). Mà -1 < 0
\(\Rightarrow-\left(x-1\right)^2-\left(y-1\right)^2-1< 0\forall x;y\)\(\Rightarrow D< 0\forall x;y\)(đpcm).
\(2x^2+2x+7=2x^2+2x+\frac{1}{2}+\frac{13}{2}\)
\(=2\left(x^2+x+\frac{1}{4}\right)+\frac{13}{2}=2.\left(x+\frac{1}{2}\right)^2+\frac{13}{2}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2.\left(x+\frac{1}{2}\right)^2+\frac{13}{2}\ge\frac{13}{2}\forall x\)
\(\Rightarrow2x^2+2x+7\ge\frac{13}{2}\forall x\)
hay biểu thức \(2x^2+2x+7\)luôn dương với mọi x ( đpcm )
2x2 + 2x + 7
= 2( x2 + x + 1/4 ) + 13/2
= 2( x + 1/2 )2 + 13/2 ≥ 13/2 > 0 ∀ x ( đpcm )
Ta có :
\(4x^2+12x+10>0\)
\(\Leftrightarrow\)\(\left(4x^2+12x+9\right)+1>0\)
\(\Leftrightarrow\)\(\left[\left(2x\right)^2+2.2x.3+3^2\right]+1>0\)
\(\Leftrightarrow\)\(\left(2x+3\right)^2+1\ge1>0\)
Vậy \(4x^2+12x+10\) luôn dương với mọi giá trị x
Chúc bạn học tốt ~
a)\(A=x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
b) \(B=2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)
Làm mỗi ý đầu !! Mấy ý kia tự làm nha !
1) Biến đổi vế trái , ta có :
\(x^2+xy+y^2+1\)
\(\Leftrightarrow x^2+xy+\frac{1}{4}y^2+\frac{3}{4}y^2+1\)
\(\Leftrightarrow\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\left(đpcm\right)\)
x2 + xy + y2 + 1
\(=\left[x^2+2\cdot x\cdot\frac{y}{2}+\left(\frac{y}{2}\right)^2\right]+\frac{3y^2}{4}+1\)
\(=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge1>0\forall x,y\left(đpcm\right)\)
\(4x-x^2\)
\(=-\left(x^2-4x+4\right)+4\)
\(=-\left(x-2\right)^2+4\le4\forall x\)
\(-x^2+4x-10\)
\(=-\left(x^2-4x+4\right)-6\)
\(=-\left(x-2\right)^2-6\le-6< 0\forall x\left(đpcm\right)\)
Sửa đề: Biểu thức luôn có giá trị dương
Ta có: \(3x^2+2x-5\)
\(=3\left(x^2+\dfrac{2}{3}x-\dfrac{5}{3}\right)\)
\(=3\left(x^2+2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{16}{9}\right)\)
\(=3\left(x+\dfrac{1}{3}\right)^2-\dfrac{16}{3}\ge-\dfrac{16}{3}\forall x\)
\(\Leftrightarrow\dfrac{1}{3\left(x+\dfrac{1}{3}\right)^2-\dfrac{16}{3}}\le\dfrac{1}{\dfrac{-16}{3}}=\dfrac{-3}{16}\forall x\)
\(\Leftrightarrow\dfrac{-1}{3\left(x+\dfrac{1}{3}\right)^2-\dfrac{16}{3}}\ge\dfrac{3}{16}>0\forall x\)(đpcm)