Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(VT=\dfrac{\left(sina+cosa\right)^3-3\cdot sina\cdot cosa\left(sina+cosa\right)}{sina+cosa}\)
=(sina+cosa)^2-3*sina*cosa
=sin^2a+cos^2a-sina*cosa
=1-sina*cosa=VP
c: VT=(sin^2a+cos^2a)^2-2*sin^2a*cos^2a-(sin^2a+cos^2a)^3+3*sin^2a*cos^2a*(sin^2a+cos^2a)
=1-2sin^2a*cos^2a-1+3*sin^2a*cos^2a
=sin^2a*cos^2a=VP
c: 2(sin^6a+cos^6a)+1
=2[(sin^2a+cos^2a)^3-3*sin^2a*cos^2a]+1
=2-6sin^2acos^2a+1
=3-6*sin^2a*cos^2a
=3(sin^4a+cos^4a)
a:
Sửa đề: =-tana*tanb
\(VT=\left(\dfrac{sina}{cosa}-\dfrac{sinb}{cosb}\right):\left(\dfrac{cosa}{sina}-\dfrac{cosb}{sinb}\right)\)
\(=\dfrac{sina\cdot cosb-sinb\cdot cosa}{cosa\cdot cosb}:\dfrac{cosa\cdot sinb-cosb\cdot sina}{sina\cdot sinb}\)
\(=\dfrac{sin\left(a-b\right)}{cosa\cdot cosb}\cdot\dfrac{sina\cdot sinb}{sin\left(b-a\right)}\)
\(=-tana\cdot tanb\)
=VP
2.
ĐK: \(2x-y\ge0;y\ge0;y-x-1\ge0;y-3x+5\ge0\)
\(\left\{{}\begin{matrix}xy-2y-3=\sqrt{y-x-1}+\sqrt{y-3x+5}\left(1\right)\\\left(1-y\right)\sqrt{2x-y}+2\left(x-1\right)=\left(2x-y-1\right)\sqrt{y}\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left(1-y\right)\sqrt{2x-y}+y-1+2x-y-1-\left(2x-y-1\right)\sqrt{y}=0\)
\(\Leftrightarrow\left(1-y\right)\left(\sqrt{2x-y}-1\right)+\left(2x-y-1\right)\left(1-\sqrt{y}\right)=0\)
\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(1+\sqrt{y}\right)+\left(\sqrt{2x-y}-1\right)\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}+1\right)=0\)
\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(\sqrt{y}+\sqrt{2x-y}+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=2x-1\end{matrix}\right.\) (Vì \(\sqrt{y}+\sqrt{2x-y}+2>0\))
Nếu \(y=1\), khi đó:
\(\left(1\right)\Leftrightarrow x-5=\sqrt{-x}+\sqrt{-3x+6}\)
Phương trình này vô nghiệm
Nếu \(y=2x-1\), khi đó:
\(\left(1\right)\Leftrightarrow2x^2-5x-1=\sqrt{x-2}+\sqrt{4-x}\) (Điều kiện: \(2\le x\le4\))
\(\Leftrightarrow2x\left(x-3\right)+x-3+1-\sqrt{x-2}+1-\sqrt{4-x}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1\right)=0\)
Ta thấy: \(1+\sqrt{x-2}\ge1\Rightarrow-\dfrac{1}{1+\sqrt{x-2}}\ge-1\Rightarrow1-\dfrac{1}{1+\sqrt{x-2}}\ge0\)
Lại có: \(\dfrac{1}{1+\sqrt{4-x}}>0\); \(2x>0\)
\(\Rightarrow\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1>0\)
Nên phương trình \(\left(1\right)\) tương đương \(x-3=0\Leftrightarrow x=3\Rightarrow y=5\)
Ta thấy \(\left(x;y\right)=\left(3;5\right)\) thỏa mãn điều kiện ban đầu.
Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(3;5\right)\)
\(a,cos^4a-sin^4a=2cos^2a-1\\ VT=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)\\ =cos^2a-sin^2a\\ =cos2a=2cos^2a-1\)
\(b,VT=\dfrac{cos^2a+\dfrac{sin^2a}{cos^2a}-1}{sin^2a}\\ =\dfrac{\dfrac{cos^4a+sin^2a-cos^2a}{cos^2a}}{sin^2a}\\ =\dfrac{\dfrac{cos^4a+\left(1-cos^2a\right)-cos^2a}{cos^2a}}{sin^2a}\\ =\dfrac{\dfrac{cos^4a+1-2cos^2a}{cos^2a}}{sin^2a}\\ =\dfrac{\dfrac{\left(1-cos^2a\right)^2}{cos^2a}}{sin^2a}\\ =\dfrac{sin^4a}{cos^2a}:sin^2a\\ =\dfrac{sin^4a}{cos^2a}\times\dfrac{1}{sin^2a}\\ =\dfrac{sin^2a}{cos^2a}=tan^2a\)