Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi a;b ta luôn có:
\(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2+b^2}\ge\sqrt{\dfrac{1}{2}\left(a+b\right)^2}=\dfrac{\sqrt{2}}{2}\left|a+b\right|\ge\dfrac{\sqrt{2}}{2}\left(a+b\right)\)
Tương tự:
\(\sqrt{b^2+c^2}\ge\dfrac{\sqrt{2}}{2}\left(b+c\right)\) ; \(\sqrt{c^2+a^2}\ge\dfrac{\sqrt{2}}{2}\left(c+a\right)\)
Cộng vế:
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\sqrt{2}\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c\ge0\)
Mình nghĩ là tìm Min, Max \(M=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\).
Tìm Min: Ta có \(M^2\ge a+b+b+c+c+a=2\left(a+b+c\right)\ge2\sqrt{a^2+b^2+c^2}=2\).
Do đó \(M\geq\sqrt{2}\).Đẳng thức xảy ra khi a = b = 0; c = 1.
Tìm Max: Ta có \(M\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\le\sqrt{6\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt{6\sqrt{3}}=\sqrt[4]{108}\).
Áp dụng bđt \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2+b^2}\ge\frac{a+b}{\sqrt{2}}\)
C/m tương tự \(\sqrt{b^2+c^2}\ge\frac{b+c}{\sqrt{2}}\)
\(\sqrt{a^2+c^2}\ge\frac{a+c}{\sqrt{2}}\)
Cộng 3 vế của 3 bđt trên lại được
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\frac{2\left(a+b+c\right)}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Dấu "=" tại a = b = c = 1/3
áp dụng nè \(\sqrt{a^2+b^2}\ge\sqrt{\frac{\left(a+b\right)^2}{2}}=\frac{a+b}{\sqrt{2}}\)
bđt đó dễ CM nha,,,,dùng hằng đẳng thức 1 là CM đc