Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là SNT lớn hơn 3 => p có dạng 3k + 1 hoặc 3k + 2 ( k\(\in\)N*)
+Xét TH1 : p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k+1)
Thấy : 3( k + 1) \(⋮\)3
3(k + 1) > 3 => p + 2 là hợp số ( loại)
Vậy p = 3k + 2 thì p + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1)
Thấy 3(k + 1)\(⋮\)3 => p + 1 \(⋮\)3 => p + 1 \(⋮\)2
Mà 2 , 3 là 2 số nguyên tố cùng nhau => p + 1 \(⋮\)2.3 => p + 1 \(⋮\)6 ( đpcm)
Số nguyên tố lớn hơn 3 sẽ có dạng 3k + 1 hay 3k + 2 (k thuộc N)
Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3(k+1) là số nguyên tố. Vì 3(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.
Vậy p có dạng 3k+2 (dễ dàng thấy p+2=3k+2+2=3k+4 là 1 số nguyên tố)
=> p+1=3k+2+1=3k+3=3(k+1) chia hết cho 3
Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2
Vì p chia hết cho cả 2 và 3 mà ƯCLN(2;3)=1 nên p+1 sẽ chia hết cho 6.
Cách 1:
p là số nguyên tố, p>3 => p không chia hết cho 3 (1)
p+2 là số nguyên tố, p+2>5>3 => p+2 không chia hết cho 3 (2)
Ta có: p(p+1)(p+2) là tích 3 số tự nhiên liên tiếp => p(p+1)(p+2) chia hết cho 3 (3)
Từ (1),(2),(3) => p+1 chia hết cho 3 (*)
Ta lại có: p là số nguyên tố, p>3 => p lẻ => p+1 chẵn => p+1 chia hết cho 2 (**)
Mà (2;3)=1 (***)
Từ (*),(**),(***) => p+1 chia hết cho 6.
Cách 2:
Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2 (k thuộc N)
Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.
Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).
=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.
Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
Chỳ ý rằng , các số nguyên tố (trừ số 2) đều là các số lẽ
- Nếu n lẽ thì n + a là số chẵn là một hợp số trỏi với giả thiết n + a là số nguyên tố. vậy n là số chẳn
- Ta dặt n = 2k, k ∈ N *
+ Nếu k chia hết cho 3 thì n chia hết cho 6
+ Nếu k = 3p + 1 , p ∈ N * thì 3 số theo thứ tự bằng a, a + 6p + 2,
a + 12p + 4
+ Do a là số lẽ nên nếu a chia cho 3 dư 1 thì a + 6p + 2 chia hết cho 3,
Nếu a chia 3 dư 2 thì a + 12p + 4 chia hết cho 3
+ Nếu k = 3p + 2 p ∈ N * thì 3 số theo thứ tự bằng
a, a + 6p +4, a + 12p +8
với a chia cho 3 dư 1 thì a + 12p +8 chia hết cho 3
với a chia cho 3 dư 2 thì a + 6p +4 chia hếtt cho 3
Vậy để 3 số a, a + n, a + 2n đều là số nguyên tố thì n phải chia hếtt cho 6.
Cho p là số nguyên tố lớn hơn 3 , biết p + 2 cũng là số nguyên tố. Chứng tỏ rằng p +1 chia hết cho 6
p là số nguyên tố lớn hơn 3 nên p = 2k + 1 hoặc p = 2k + 2
- Nếu p = 2k + 1 => p + 2 = 2k + 3,là số nguyên tố nếu p không là bội của 3. Do đó p + 1 = 2k + 2 chia hết cho 6.
- Nếu p = 2k + 2 => p + 2 = 3k + 4 là hợp số, loại.
=> đpcm
tick đúng cho tớ với !
Cho p là số nguyên tố lớn hơn 3 , biết p + 2 cũng là số nguyên tố. Chứng tỏ rằng p +1 chia hết cho 6