Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n + 5 và 3n+ 7
=> Gợi UCLN của 2n+ 5 và 3n+ 7 là d
=> 2n+5 chia hết cho d
=> 3n+7 chai hết cho d
=> 3( 2n+5) chia hết cho d
=> 2( 3n+7) chia hết cho d
=> 6n + 15 chia hết cho d
=> 6n+ 14 chia hết cho d
=> 6n+ 15- 6n + 14 chia hết cho d
=> 1 chia hết cho d
=> d= 1
=> UCLN ( 2n+5) và 3n+7 là 1
=> đpcm
Tick nhé
Gọi UCLN(2n + 5; 3n + 7) là d
=> 2n + 5 chia hết cho d => 3(2n + 5) chia hết cho d
3n + 7 chia hết cho d => 2(3n + 7) chia hết cho d
=> 3(2n + 5) - 2(3n + 7) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=>UCLN(2n + 5; 3n + 7) = 1
Vậy...
Ta gọi d thuộc ƯC(n+1,3n+4)
Ta có n+1 chia hết cho d, 3n+4 chia hết cho d
=> 3(n+1) chia hết cho d, 3n+4 chia hết cho d
=> 3n+3 chia hết cho d, 3n+4 chia hết cho d
=> (3n+4) - ( 3n+3 ) chia hết cho d ( vì 3n+ 4 chia hết cho d và 3n+3 cũng chia hết cho d )
=> 1 chia hết cho d => d = 1. Vậy n+1 và 3n+4 là 2 số nguyên tố cùng nhau ( đpcm )
Giả sử rằng với n = k (k thuộc N) ta có 2k+1 và 6k+5 ko phải là 2 số nguyên tố cùng nhau, nghĩa là UCLN(2k+1;6k+5) = d (d > 1)
d là ước của 2k+1 và 6k+5 ---> d là ước của 6k+5 - 3.(2k+1) = 2 ---> d = 2 (vì d > 1)
Nhưng điều đó là vô lý vì 2 không thể là ước của 2k+1 và 6k+5 được
Do đó điều giả sử trên là sai ---> 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau với mọi n thuộc N.
Gọi \(d=ƯCLN\left(n+2;3n+5\right)\)
\(\Rightarrow\hept{\begin{cases}n+2⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(n+2\right)⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+5⋮d\end{cases}}\)
\(\Rightarrow\left(3n+6\right)-\left(3n+5\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Do đó: ƯCLN(n + 2; 3n + 5) = 1
Vậy hai số n + 2 và 3n + 5 là hai số nguyên tố cùng nhau.
Học tốt nhé ^3^
Gọi ƯCLN(n + 2, 3n + 5) là d (d thuộc N*)
Ta có n + 2 chia hết cho d
3n + 5 chia hết cho d
=> 3(n + 2) chia hết cho d
3n + 5 chia hết cho d
=> 3n + 6 chia hết cho d
3n + 5 chia hết cho d
=> (3n + 6) - (3n + 5) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
Ư(1) = {1}
=> d = 1
=> ƯCLN (n+2, 3n + 5) = 1
Vậy n + 2 và 3n + 5 là hai số nguyên tố cùng nhau
(Mik nghĩ vậy tại mik ko nhớ cho lắm)
Hok tốt