K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TT
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NB
0
TM
0
TN
1
17 tháng 6 2018
A = 1/31 + 1/32 + 1/33 + ... + 1/60
=> A = (1/31 + 1/32 + ... + 1/45) + (1/46 + 1/47 + ... 1/60) > (1/45) x 15 + (1/60) x 15
=> A > 1/3 + 1/4 = 7/12
Vậy A > 7/12 (đpcm)
CM
0
LM
13 tháng 6 2018
Ta có:\(\dfrac{31}{2}\).\(\dfrac{32}{2}\).\(\dfrac{33}{2}\).....\(\dfrac{60}{2}\)
=\(\dfrac{31.32.33.....60}{2^{30}}\)
=\(\dfrac{\left(1.2.3.....30\right).\left(31.32.33.....60\right)}{\left(1.2.3.....30\right).2^{30}}\)
=\(\dfrac{1.2.3.....60}{2.4.6.....60}\)
=\(\dfrac{\left(1.3.5.....59\right).\left(2.4.6.....60\right)}{2.4.6.....60}\)
=1.3.5.....59
Vậy (đpcm)
AN
0
Đặt \(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{59}+\frac{1}{60}\)
S có 30 số hạng.Nhóm thành ba nhóm, mỗi nhóm có 10 số hạng
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(S< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)
\(S< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}\)
\(S< \frac{47}{60}< \frac{50}{60}=\frac{5}{6}\)(1)
\(S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)
\(S>\frac{10}{40}+\frac{10}{50}+\frac{10}{60}\)
\(S>\frac{37}{60}>\frac{35}{60}\left(2\right)\)
Từ (1) và (2) => \(\frac{7}{12}< S< \frac{5}{6}\)
hay \(\frac{7}{12}< \frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{59}+\frac{1}{60}< \frac{5}{6}\)
Sửa cái phần đây nhá : \(S>\frac{37}{60}>\frac{35}{60}=\frac{7}{12}\)