Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi ƯCLN (n + 3; n + 2) = d.
Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d
Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.
b) Gọi ƯCLN (3n+4; 3n + 7) = đ.
Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên
d = 1 hoặc d = 3.
Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.
c) Gọi ƯCLN (2n + 3; 4n + 8) = d.
Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d
nên d = 1 hoặc d = 2.
Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.
Gọi d = (A=3n+5 ;B=2n+3) => A ; B chia hết cho d
=> 2A -3B = 2(3n+5) - 3(2n+3) = 6n +10 - 6n -9 =1 chia hết cho d
=> d =1
Vậy (A;B) =1
gọi uoc chung cua 3n + 4 va 4n+5 là x
ta co
3n+4chia het cho x suy ra 12n+16 chia het cho x
4n+5 chia het cho x suy ra 12n+15 chia het cho x
suy ra 12n+16-12n+15=1 chia het cho x suy ra x =1
vay 4n+5 và 3n+4 nguyen to cung nhau
Gọi ƯCLN (3n+4,4n+5) là d ( d thuộc N*)
suy ra 3n+4 chia hết cho d , 4n+5 chia hết cho d.
Xét 3n+4 chia hết cho d
suy ra 4(3n+4) chia hết cho d
hay 12n+16 chia hết cho d (1)
4n+5chia hết cho d
suy ra 3(4n+5) chia hết cho d
hay 12n+15 chia hết cho d (2)
(1),(2) suy ra (12n+16)-(12n+15)chia hết cho d.
1 chia hết cho d
suy ra d=1
suy ra ƯCLN(3n+4,4n+5)=1
Vậy 3n+4,4n+5 là 2 số nguyên tố cùng nhau
b) gọi d = ƯCLN(2n + 3; 3n + 5)
--> 3(2n + 3) và 2(3n + 5) chia hết cho d
--> (6n + 10) - (6n + 9) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n + 3 và 3n + 5 nguyên tố cùng nhau
a: Vì n+2 và n+3 là hai số tự nhiên liên tiếp
nên n+2 và n+3 là hai số nguyên tố cùng nhau
Gọi d là UCLN(2n+3,3n+5)
\(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
=>d = 1
=>UCLN(2n+3,3n+5) = 1
=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau
Gọi d là UCLN(5n+6,8n+7)
\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}8\left(5n+6\right)⋮d\\5\left(8n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}}\)
\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1;13\right\}\)
Để \(\left(5n+6,8n+7\right)=1\)thì \(d\ne13\)
=> UCLN(5n+6,8n+7) = 1
B1) Gọi d là UCLN của (2n+3) và (3n+5)
Ta có: (2n+3):d và (3n+5):d => 3(2n+3):d và 2(3n+5):d
=> 2(3n+5)-3(2n+3):d <=> (6n+10-6n-9):d <=> 1:d. Do đó UCLN của 2 số đó là 1
Vậy chúng là 2 số nguyên tố cùng nhau.
B2) Cách giải tương tự.
Gọi d là ƯCLN( 2n+3;3n+4)
=> 2n+3 chia hết cho d và 3n+4 chia hết cho d
=> (2n+3) - (3n+4) chia hết cho d
=> 3(2n+3) - 2(3n+4) chia hết cho d
=> (6n+9) - (6n+8) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯCLN(2n+3; 3n+4) = 1
Vậy 2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau
Các bn trả lời nhanh giùm mình nha.