Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt tổng đã cho là S
Do \(1.2.3.4.5+...+1.2.3...99.100\) chia hết cho 10
\(\Rightarrow S\) cùng số dư với \(1.2+1.2.3+1.2.3.4\) khi chia 10
Mà \(1.2+1.2.3+1.2.3.4=32\) chia 10 dư 2
\(\Rightarrow S\) chia 10 dư 2
ta để ý rằng từ số hạng thứ 4 trở đi đều có chứa tích \(4\times5\) nên các số hạng đó đều chia hết cho 10
nên ta chỉ cần tính \(1.2+1.2.3+1.2.3.4\text{ chia cho 10 dư bao nhiêu chính là dư của tổng đề bài hỏi}\)
Mà \(1.2+1.2.3+1.2.3.4=32\text{ chia 10 dư 2}\)
vậy tổng đã cho chia 10 dư 2
bạn ơi hình như đề bài là:
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\)thì phải ha.
\(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}\)
Có: \(\frac{1}{1.2.3.4}< \frac{1}{3.4}\)
\(\frac{1}{1.2.3.4.5}< \frac{1}{4.5}\)
..................................
\(\frac{1}{1.2.3.4.....1000}< \frac{1}{999.1000}\)
=>\(\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4.5}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{999.1000}\)
=> \(\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4.5}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{999}-\frac{1}{1000}\)
=> \(\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4.5}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{3}-\frac{1}{1000}\)
=> \(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{2}+\frac{1}{1.2.3}+\frac{1}{3}-\frac{1}{1000}\)
=> \(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}< \frac{999}{1000}< \frac{1000}{1000}\)
=>\(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}< 1\)