Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=22+23+..+22005
2A=23+24+..+22006
suy ra 2A-A=(23+24+..+22006) - (22+23+..+22005)
A=22006-22
suy ra C=4+22006-4
C=22006 .Là lũy thừa của 2 (đpcm)
https://hoc247.net/hoi-dap/toan-6/chung-minh-a-1-1-2-1-3-1-100-khong-phai-so-tu-nhien-faq442360.html
Em tk trang đó nha
Ta có
\(A=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
=> A > 1 do \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\ne0\)
\(\dfrac{1}{2}>\dfrac{1}{100}\)
\(\dfrac{1}{3}>\dfrac{1}{100}\)
................
\(\dfrac{1}{100}=\dfrac{1}{100}\)
=> \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}>\dfrac{1}{100}.99\) (do dãy có 99 số) = \(\dfrac{99}{100}\)
=> A < \(1+\dfrac{99}{100}< 1+\dfrac{100}{100}=1+1=2\)
=> 1 < A < 2
Vậy A không phải số tự nhiên
\(B=1+4+4^2+...+4^{11}\)
\(\Rightarrow B=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{10}+4^{11}\right)\)
\(\Rightarrow B=\left(1+4\right)+4^2\left(1+4\right)+...+4^{10}\left(1+4\right)\)
\(\Rightarrow B=\left(1+4\right)\left(4^2+...+4^{10}\right)\)
\(\Rightarrow B=5\left(4^2+...+4^{10}\right)⋮5\)
\(B=1+4+4^2+...+4^{11}\)
\(\Rightarrow B=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)...+\left(4^9+4^{10}+4^{11}\right)\)
\(\Rightarrow B=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)...+4^9\left(1+4+4^2\right)\)
\(\Rightarrow B=\left(1+4+4^2\right)\left(4^3+...+4^9\right)\)
\(\Rightarrow B=21\left(4^3+...+4^9\right)⋮21\)
Gọi ƯCLN (2n+1;6n+5) = d ( d thuộc N sao )
=> 2n+1 và 6n+5 đều chia hết cho d
=> 3.(2n+1) và 6n+5 đều chia hết cho d
=> 6n+3 và 6n+5 đều chia hết cho d
=> 6n+5-(6n+3) chia hết cho d
=> 2 chia hết cho d
Mà 2n+1 lẻ nên d lẻ
=> d=1
=> ƯCLN (2n+1;6n+5) = 1
=> ĐPCM
k mk nha
Gọi UCLN(2n+1;6n+5)=d
Ta có: 2n+1 chia hết cho d\(\Rightarrow3\left(2n+1\right)\) chia hết cho d\(\Rightarrow6n+3\) chia hết cho d
6n+5 chia hết cho d
\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)\) chia hết cho d
\(\Rightarrow2\) chia hết cho d
\(\Rightarrow d\in\left\{1,2\right\}\).Vì 2n+1 lẻ nên không chia hêt cho 2
\(\Rightarrowđpcm\)
Ta có : \(\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{32}+\frac{1}{32}+\frac{1}{32}+...+\frac{1}{32}\) (8 số hạng)
\(\Rightarrow\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{32}.8=\frac{1}{4}< \frac{1}{2}\)
\(\Rightarrow\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{2}\left(đpcm\right)\)
\(A=\frac{1}{32}+\frac{1}{42}+...+\frac{1}{102}< \frac{1}{32}+\frac{1}{32}+...+\frac{1}{32}=\frac{8}{32}< \frac{16}{32}=\frac{1}{2}\)
Vậy \(A< \frac{1}{2}\)