Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{\sqrt[6]{\left(7-4\sqrt{3}\right).\left(7+4\sqrt{3}\right)}-x}{\sqrt[4]{\left(9+4\sqrt{5}\right).\left(9-4\sqrt{5}\right)}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+\frac{\left(1+\sqrt{x}\right).\left(1-\sqrt{x}\right)}{1+\sqrt{x}}\)
\(=\sqrt{x}+1-\sqrt{x}=1\)
\(A=\dfrac{4x\sqrt{x}+3x+9+x-9}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}:\dfrac{x+2\sqrt{x}-4\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{4x\sqrt{x}+4x}{x-2\sqrt{x}-3}=\dfrac{4x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}=\dfrac{4x}{\sqrt{x}-3}\)
a, de phuong trinh tren co nghia thi \(3x-9\ge0\)
\(3x\ge9< =>x\ge3\)
b, de phuong trinh tren co nghia thi \(5-10x\ge0\)
\(< =>10x\le5\)\(< =>x\le\frac{1}{2}\)
c, de phuong trinh tren co nghia thi \(\frac{3}{2x+1}\ge0\)(DK: x khac -1/2)
\(< =>2x+1\ge0\)\(< =>x>-\frac{1}{2}\)
d, de phuong trinh tren co nghia thi \(\frac{2x-4}{3}\ge0\)
\(< =>2x-4\ge0\)\(< =>x\ge2\)
e, de phuong trinh tren co nghia thi \(\frac{x^2}{2x-3}\)
do \(x^2\ge\)suy ra \(2x-3\ge0\)
\(< =>2x\ge3\)\(< =>x\ge\frac{3}{2}\)
1)
ĐK: \(x\geq 2\)
\(\sqrt{x-2}-3\sqrt{x^2-4}=0\)
\(\Leftrightarrow \sqrt{x-2}-3\sqrt{(x-2)(x+2)}=0\)
\(\Leftrightarrow \sqrt{x-2}(1-3\sqrt{x+2})=0\)
\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}=\frac{1}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=\frac{-17}{9}(\text{loại vì x}\geq 2)\end{matrix}\right.\)
Vậy $x=2$ là nghiệm của pt
2) ĐK: \(x\geq 1\)
Ta có: \(x+\sqrt{x-1}=13\)
\(\Leftrightarrow (x-1)+\sqrt{x-1}+\frac{1}{4}=\frac{49}{4}\)
\(\Leftrightarrow (\sqrt{x-1}+\frac{1}{2})^2=\frac{49}{4}\)
Vì \(\sqrt{x-1}+\frac{1}{2}>0\) nên \(\sqrt{x-1}+\frac{1}{2}=\sqrt{\frac{49}{4}}=\frac{7}{2}\)
\(\Rightarrow \sqrt{x-1}=3\)
\(\Rightarrow x=3^2+1=10\) (thỏa mãn)
Vậy.......
Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương
Chỉ trình bày lời giải, tự tìm điều kiện nha :v
d) \(\sqrt{x+2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Rightarrow x-1=1\Leftrightarrow x=2\)
f) \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-4}+2=2\)
\(\Leftrightarrow\sqrt{x-4}=0\)
\(\Rightarrow x-4=0\Leftrightarrow x=4\)
Đặt \(a=\sqrt[3]{9+4\sqrt{5}},b=\sqrt[3]{9-4\sqrt{5}}\)
\(\Rightarrow\hept{\begin{cases}a+b=x\\ab=1\end{cases}}\)
Ta có: \(x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Rightarrow x^3=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3.1.x\)
\(\Leftrightarrow x^3=18+3x\)
\(\Leftrightarrow x^3-3x-18=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+6\right)=0\)
Vì \(x^2+3x+6=\left(x+\frac{3}{2}\right)^2+\frac{15}{4}>0\)
\(\Rightarrow x-3=0\Leftrightarrow x=3\)
Thay x=3 vào \(x^5-3x-18=0\), thấy không thoả mãn.
KL: Đề sai !