K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

Gọi A là vế trái của bất đăng thức trên . ta sử dụng tính chất bắc cầu của bất đẳng thức dưới dạng phương pháp làm trội , để chứng minh A< b , ta làm trội A thành C ( A<C ) rồi chứng minh C>= B ( biểu thức C đóng vai trò là biểu thức trung gian để so sánh A và B)

làm trội mỗi phân số ở A bằng cách làm giảm các mẫu , ta có 

\(\frac{1}{k^3}\)\(\frac{1}{k^3-k}\)\(\frac{1}{k\left(k^2-1\right)}\)\(\frac{1}{\left(k-1\right)k\left(k+1\right)}\)

do đó 

A < \(\frac{1}{2^3-2}\)\(\frac{1}{3^3-3}\)+.....+\(\frac{1}{n^3-n}\)\(\frac{1}{1.2.3}\)\(\frac{1}{2.3.4}\)+ .....+ \(\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

đặt C = \(\frac{1}{1.2.3}\)\(\frac{1}{2.3.4}\)+.....+\(\frac{1}{\left(n-1\right)n\left(n+1\right)}\), nhận xét rằng 

\(\frac{1}{\left(n-1\right)n}\)\(\frac{1}{n\left(n+1\right)}\)\(\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

nên C = \(\frac{1}{2}\)[\(\frac{1}{1.2}\)\(\frac{1}{2.3}\)-......- \(\frac{1}{\left(n-1\right)n}\)-\(\frac{1}{n\left(n+1\right)}\)]

\(\frac{1}{2}\)[\(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\)]

\(\frac{1}{4}\)\(\frac{1}{2n\left(n+1\right)}\)\(\frac{1}{4}\)

vậy ta có điều phải chứng minh

14 tháng 1 2019

\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

\(A< 1-\frac{1}{n}< 1-\frac{1}{2}=\frac{1}{2}< \frac{2}{3}\)

                                         đpcm

9 tháng 8 2019

\(\frac{1}{3^3}< \frac{1}{2.3.4}\) \(\frac{1}{4^3}< \frac{1}{3.4.5}\) \(\frac{1}{5^3}< \frac{1}{4.5.6}\) .....  \(\frac{1}{n^3}< \frac{1}{\left(n-1\right)n\left(n+1\right)}\)

\(\Rightarrow B< \frac{1}{2.3.4}+\frac{1}{3.4.5}+\frac{1}{4.5.6}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

\(\Rightarrow B< \frac{1}{2}\left(\frac{2}{2.3.4}+\frac{2}{3.4.5}+\frac{2}{4.5.6}+...+\frac{2}{\left(n-1\right)n\left(n+1\right)}\right)\)

\(\Rightarrow B< \frac{1}{2}\left(\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+\frac{6-4}{4.5.6}+...+\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}\right)\)

\(\Rightarrow B< \frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{4.5}-\frac{1}{5.6}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)

\(\Rightarrow B< \frac{1}{2}\left(\frac{1}{6}-\frac{1}{n\left(n+1\right)}\right)=\frac{1}{12}-\frac{1}{2n\left(n+1\right)}< \frac{1}{12}\)

9 tháng 8 2019

Đặt \(A=\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}\)

Ta có : \(\left(2n+1\right)^2=4n^2+4n+1>4n^2+4n\Leftrightarrow\left(2n+1\right)^2>2n\left(2n+2\right)\)\(\Leftrightarrow\frac{1}{\left(2n+1\right)^2}< \frac{1}{2n\left(2n+2\right)}\)

Mà \(\hept{\begin{cases}\frac{1}{3^2}< \frac{1}{2.4}\\\frac{1}{5^2}< \frac{1}{4.6}\\\frac{1}{7^2}< \frac{1}{6.8}\end{cases}}\)

\(...............\)

\(\frac{1}{\left(2n+1\right)^2}< \frac{1}{2n\left(2n+2\right)}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n\left(2n+2\right)}=B\)

\(=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{2n+2-2n}{2n\left(2n+2\right)}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n}-\frac{1}{2n+2}\)

\(=\frac{1}{2}-\frac{1}{2n+2}< \frac{1}{2}\Rightarrow B< \frac{1}{4}\)

\(\Rightarrow A< B< \frac{1}{4}\Rightarrow A< \frac{1}{4}\) hay đpcm

25 tháng 7 2019

Bạn tham khảo nhé!Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

25 tháng 7 2019

Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo nhé!

20 tháng 5 2019

gọi A là vế trái của bất đẳng thức trên

Ta có : \(\frac{1}{k^3}< \frac{1}{k^3-k}=\frac{1}{k.\left(k-1\right)\left(k+1\right)}\)

Do đó : A < \(\frac{1}{2^3-2}+\frac{1}{3^3-3}+...+\frac{1}{n^3-n}=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

Đặt C = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

Ta thấy \(\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}=\frac{2}{\left(n-1\right)n\left(n+1\right)}\)

nên 

C = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\right)=\frac{1}{4}-\frac{1}{2n\left(n+1\right)}< \frac{1}{4}\)

Vậy ....