Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1: Quy nạp
Đặt An = n3 + 3n2 + 5n
+ Ta có: với n = 1
A1 = 1 + 3 + 5 = 9 chia hết 3
+ giả sử với n = k ≥ 1 ta có:
Ak = (k3 + 3k2 + 5k) chia hết 3 (giả thiết quy nạp)
Ta chứng minh Ak + 1 chia hết 3
Thật vậy, ta có:
Ak + 1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)
= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5
= (k3 + 3k2 + 5k) + 3k2 + 9k + 9
Theo giả thiết quy nạp: k3 + 3k2 + 5k ⋮ 3
Mà 3k2 + 9k + 9 = 3.(k2 + 3k + 3) ⋮ 3
⇒ Ak + 1 ⋮ 3.
Cách 2: Chứng minh trực tiếp.
Có: n3 + 3n2 + 5n
= n.(n2 + 3n + 5)
= n.(n2 + 3n + 2 + 3)
= n.(n2 + 3n + 2) + 3n
= n.(n + 1)(n + 2) + 3n.
Mà: n(n + 1)(n + 2) ⋮ 3 (tích của ba số tự nhiên liên tiếp)
3n ⋮ 3
⇒ n3 + 3n2 + 5n = n(n + 1)(n + 2) + 3n ⋮ 3.
Vậy n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*
Cách 1: Chứng minh quy nạp.
Đặt Un = n3 + 11n
+ Với n = 1 ⇒ U1 = 12 chia hết 6
+ giả sử đúng với n = k ≥ 1 ta có:
Uk = (k3 + 11k) chia hết 6 (giả thiết quy nạp)
Ta cần chứng minh: Uk + 1 = (k + 1)3 + 11(k + 1) chia hết 6
Thật vậy ta có:
Uk+1 = (k + 1)3 + 11(k +1)
= k3 + 3k2 + 3k + 1 + 11k + 11
= (k3 + 11k) + 3k2 + 3k + 12
= Uk + 3(k2 + k + 4)
Mà: Uk ⋮ 6 (giả thiết quy nạp)
3.(k2 + k + 4) ⋮ 6. (Vì k2 + k + 4 = k(k + 1) + 4 ⋮2)
⇒ Uk + 1 ⋮ 6.
Vậy n3 + 11n chia hết cho 6 ∀n ∈ N*.
Cách 2: Chứng minh trực tiếp.
Có: n3 + 11n
= n3 – n + 12n
= n(n2 – 1) + 12n
= n(n – 1)(n + 1) + 12n.
Vì n(n – 1)(n + 1) là tích ba số tự nhiên liên tiếp nên có ít nhất 1 thừa số chia hết cho 2 và 1 thừa số chia hết cho 3
⇒ n(n – 1)(n + 1) ⋮ 6.
Lại có: 12n ⋮ 6
⇒ n3 + 11n = n(n – 1)(n + 1) + 12n ⋮ 6.
n^3+11n chia hết cho 6
n^3+11n=n^3-n+12n
=(n-1)n(n+1)+12n
vậy n^3+11n luôn chia hết cho 6, với mọi n
Đặt un = 3n3 + 15n
+ Với n = 1 ⇒ u1 = 18 ⋮ 9.
+ Giả sử với n = k ≥ 1 ta có: uk = (3k3 + 15k) ⋮ 9
⇒ uk+1 = 3(k + 1)3 + 15(k + 1 )
= 3(k3 + 3k2 + 3k + 1) + 15k + 15
= (3k3 + 15k) + 9k2 + 9k + 18
= (3k3 + 15k) + 9(k2 + k + 2)
= uk + 9(k2 + k + 2)
Mà uk ⋮ 9 và 9(k2 + k + 2) ⋮ 9
⇒ uk + 1 ⋮ 9.
Vậy un = 3n3 + 15n ⋮ 9 ∀n ∈ N*
Đặt un = 13n – 1
+ Với n = 1 thì u1 = 13 – 1 = 12 chia hết 6
+ Giả sử: uk = 13k – 1 chia hết cho 6.
⇒ uk + 1 = 13k + 1 – 1
= 13k+1 + 13k – 13k – 1
= 13k(13 – 1) + 13k – 1
= 12.13k + uk.
Mà 12.13k ⋮ 6; uk ⋮ 6.
⇒ uk + 1 ⋮ 6.
⇒ un ⋮ 6 với mọi n ∈ N.
hay 13n – 1 ⋮ 6 với mọi n ∈ N.
Phân tích nhân tử nhầm=>giải lại
\(A=2n^2-3n^2+n=n\left(2n^2-3n+1\right)=n\left(n-1\right)\left(2n+1\right)\)\(A=n\left(n-1\right)\left(2n+2-3\right)=\left[2n\left(n-1\right)\left(n+1\right)\right]-3\left(n\right)\left(n-1\right)=2B-3C\)
\(\left\{{}\begin{matrix}B⋮3\\C⋮2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2B⋮6\\3C⋮3\end{matrix}\right.\) \(\Rightarrow A⋮6\) => dpcm
Lời giải:
\(A=n\left(2n^3-3n+1\right)=n\left(n-1\right)\left(2n^2+2n-1\right)\)
\(A=n\left(n-1\right)\left[2n\left(n+1\right)-1\right]=2n\left(n-1\right)\left(n+1\right)+n\left(n-1\right)=B-C\)\(\left\{{}\begin{matrix}B⋮2\\B⋮3\end{matrix}\right.\)\(\Rightarrow B⋮6\forall n\in N\)
\(C=n\left(n-1\right)\) không thể chia hết cho 6 với mọi n thuộc N
\(\Rightarrow A\) chỉ chia hết cho 6 với điều kiện \(n\ne3k+2\)
ví dụ đơn giải với k=0 => n= 2
\(A=2.2^3-3.2^2+2=14⋮̸6\)
Kết luận đề sai
- Với \(n=4\Rightarrow3^3>4.6\) (đúng)
- Giả sử BĐT đã cho đúng với \(n=k\ge4\) hay \(3^{k-1}>k\left(k+2\right)\)
- Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay: \(3^k>\left(k+1\right)\left(k+3\right)\)
Thật vậy, do \(k\ge4\Rightarrow k-3>0\), ta có:
\(3^k=3.3^{k-1}>3k\left(k+2\right)=3k^2+6k=\left(k^2+4k+3\right)+\left(2k^2+2k-3\right)\)
\(=\left(k+1\right)\left(k+3\right)+2k^2+k+\left(k-3\right)>\left(k+1\right)\left(k+3\right)\) (đpcm)
a) Với n = 1, ta có:
13n – 1 = 131 – 1 = 12 ⋮ 6
Giả sử: 13k - 1 ⋮ 6 với mọi k ≥ 1
Ta chứng minh: 13k+1 – 1 chia hết cho 6
Thật vậy:
13k+1 – 1 = 13k+1 – 13k+ 13k -1 = 12.13k +13k – 1
Vì : 12.13k ⋮ 6 và 13k – 1 ⋮ 6
Nên : 13k+1 – 1 ⋮ 6
Vậy 13n -1 chia hết cho 6
b) Với n = 1, ta có: 3n3 + 15n = 18 ⋮ 9
Giả sử: 3(k + 1)3 + 15(k + 1) Ta chứng minh: 3(k + 1)3 + 15(k + 1) ⋮ 9
Thật vậy:
3(k + 1)3 + 15(k + 1) = 3. (k3 + 3k2 + 3k + 1) + 15(k + 1)
= 3k3 + 9k2 + 9k + 15k + 18
= 3k3 + 15k + 9(k2 + k + 2)
Vì 3(k + 1)3 + 15(k + 1) (giả thiết quy nạp) và 9(k2 + k + 2) ⋮ 9
Nên: 3(k + 1)3 + 15(k + 1) ⋮ 9
Vậy: 3n3 + 15n chia hết cho 9 với mọi n ∈ N*