K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2018

Cách 1: Quy nạp

Đặt An = n3 + 3n2 + 5n

+ Ta có: với n = 1

A1 = 1 + 3 + 5 = 9 chia hết 3

+ giả sử với n = k ≥ 1 ta có:

Ak = (k3 + 3k2 + 5k) chia hết 3 (giả thiết quy nạp)

Ta chứng minh Ak + 1 chia hết 3

Thật vậy, ta có:

Ak + 1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)

         = k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5

         = (k3 + 3k2 + 5k) + 3k2 + 9k + 9

Theo giả thiết quy nạp: k3 + 3k2 + 5k ⋮ 3

Mà 3k2 + 9k + 9 = 3.(k2 + 3k + 3) ⋮ 3

⇒ Ak + 1 ⋮ 3.

Cách 2: Chứng minh trực tiếp.

Có: n3 + 3n2 + 5n

      = n.(n2 + 3n + 5)

      = n.(n2 + 3n + 2 + 3)

      = n.(n2 + 3n + 2) + 3n

      = n.(n + 1)(n + 2) + 3n.

Mà: n(n + 1)(n + 2) ⋮ 3 (tích của ba số tự nhiên liên tiếp)

3n ⋮ 3

⇒ n3 + 3n2 + 5n = n(n + 1)(n + 2) + 3n ⋮ 3.

Vậy n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*

30 tháng 3 2018

20 tháng 11 2018

Cách 1: Chứng minh quy nạp.

Đặt Un = n3 + 11n

+ Với n = 1 ⇒ U1 = 12 chia hết 6

+ giả sử đúng với n = k ≥ 1 ta có:

Uk = (k3 + 11k) chia hết 6 (giả thiết quy nạp)

Ta cần chứng minh: Uk + 1 = (k + 1)3 + 11(k + 1) chia hết 6

Thật vậy ta có:

Uk+1 = (k + 1)3 + 11(k +1)

         = k3 + 3k2 + 3k + 1 + 11k + 11

         = (k3 + 11k) + 3k2 + 3k + 12

 

         = Uk + 3(k2 + k + 4)

Mà: Uk ⋮ 6 (giả thiết quy nạp)

3.(k2 + k + 4) ⋮ 6. (Vì k2 + k + 4 = k(k + 1) + 4 ⋮2)

⇒ Uk + 1 ⋮ 6.

Vậy n3 + 11n chia hết cho 6 ∀n ∈ N*.

Cách 2: Chứng minh trực tiếp.

Có: n3 + 11n

= n3 – n + 12n

= n(n2 – 1) + 12n

= n(n – 1)(n + 1) + 12n.

Vì n(n – 1)(n + 1) là tích ba số tự nhiên liên tiếp nên có ít nhất 1 thừa số chia hết cho 2 và 1 thừa số chia hết cho 3

⇒ n(n – 1)(n + 1) ⋮ 6.

Lại có: 12n ⋮ 6

⇒ n3 + 11n = n(n – 1)(n + 1) + 12n ⋮ 6.

7 tháng 3 2021

n^3+11n chia hết cho 6

n^3+11n=n^3-n+12n

=(n-1)n(n+1)+12n

vậy n^3+11n luôn chia hết cho 6, với mọi n

27 tháng 1 2017

19 tháng 7 2017

Đặt un = 3n3 + 15n

+ Với n = 1 ⇒ u1 = 18 ⋮ 9.

+ Giả sử với n = k ≥ 1 ta có: uk = (3k3 + 15k) ⋮ 9

⇒ uk+1 = 3(k + 1)3 + 15(k + 1 )

              = 3(k3 + 3k2 + 3k + 1) + 15k + 15

              = (3k3 + 15k) + 9k2 + 9k + 18

              = (3k3 + 15k) + 9(k2 + k + 2)

              = uk + 9(k2 + k + 2)

Mà uk ⋮ 9 và 9(k2 + k + 2) ⋮ 9

⇒ uk + 1 ⋮ 9.

Vậy un = 3n3 + 15n ⋮ 9 ∀n ∈ N*

11 tháng 4 2019

Đặt un = 13n – 1

+ Với n = 1 thì u1 = 13 – 1 = 12 chia hết 6

+ Giả sử: uk = 13k – 1 chia hết cho 6.

⇒ uk + 1 = 13k + 1 – 1

              = 13k+1 + 13k – 13k – 1

              = 13k(13 – 1) + 13k – 1

              = 12.13k + uk.

Mà 12.13k ⋮ 6; uk ⋮ 6.

⇒ uk + 1 ⋮ 6.

⇒ un ⋮ 6 với mọi n ∈ N.

hay 13n – 1 ⋮ 6 với mọi n ∈ N.

13 tháng 4 2017

Phân tích nhân tử nhầm=>giải lại

\(A=2n^2-3n^2+n=n\left(2n^2-3n+1\right)=n\left(n-1\right)\left(2n+1\right)\)\(A=n\left(n-1\right)\left(2n+2-3\right)=\left[2n\left(n-1\right)\left(n+1\right)\right]-3\left(n\right)\left(n-1\right)=2B-3C\)

\(\left\{{}\begin{matrix}B⋮3\\C⋮2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2B⋮6\\3C⋮3\end{matrix}\right.\) \(\Rightarrow A⋮6\) => dpcm

13 tháng 4 2017

Lời giải:

\(A=n\left(2n^3-3n+1\right)=n\left(n-1\right)\left(2n^2+2n-1\right)\)

\(A=n\left(n-1\right)\left[2n\left(n+1\right)-1\right]=2n\left(n-1\right)\left(n+1\right)+n\left(n-1\right)=B-C\)\(\left\{{}\begin{matrix}B⋮2\\B⋮3\end{matrix}\right.\)\(\Rightarrow B⋮6\forall n\in N\)

\(C=n\left(n-1\right)\) không thể chia hết cho 6 với mọi n thuộc N

\(\Rightarrow A\) chỉ chia hết cho 6 với điều kiện \(n\ne3k+2\)

ví dụ đơn giải với k=0 => n= 2

\(A=2.2^3-3.2^2+2=14⋮̸6\)

Kết luận đề sai

NV
3 tháng 12 2021

- Với \(n=4\Rightarrow3^3>4.6\) (đúng)

- Giả sử BĐT đã cho đúng với \(n=k\ge4\) hay \(3^{k-1}>k\left(k+2\right)\) 

- Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay: \(3^k>\left(k+1\right)\left(k+3\right)\)

Thật vậy, do \(k\ge4\Rightarrow k-3>0\), ta có:

\(3^k=3.3^{k-1}>3k\left(k+2\right)=3k^2+6k=\left(k^2+4k+3\right)+\left(2k^2+2k-3\right)\)

\(=\left(k+1\right)\left(k+3\right)+2k^2+k+\left(k-3\right)>\left(k+1\right)\left(k+3\right)\) (đpcm)

9 tháng 4 2017

a) Với n = 1, ta có:

13n – 1 = 131 – 1 = 12 ⋮ 6

Giả sử: 13k - 1 ⋮ 6 với mọi k ≥ 1

Ta chứng minh: 13k+1 – 1 chia hết cho 6

Thật vậy:

13k+1 – 1 = 13k+1 – 13k+ 13k -1 = 12.13k +13k – 1

Vì : 12.13k ⋮ 6 và 13k – 1 ⋮ 6

Nên : 13k+1 – 1 ⋮ 6

Vậy 13n -1 chia hết cho 6

b) Với n = 1, ta có: 3n3 + 15n = 18 ⋮ 9

Giả sử: 3(k + 1)3 + 15(k + 1) Ta chứng minh: 3(k + 1)3 + 15(k + 1) ⋮ 9

Thật vậy:

3(k + 1)3 + 15(k + 1) = 3. (k3 + 3k2 + 3k + 1) + 15(k + 1)

= 3k3 + 9k2 + 9k + 15k + 18

= 3k3 + 15k + 9(k2 + k + 2)

Vì 3(k + 1)3 + 15(k + 1) (giả thiết quy nạp) và 9(k2 + k + 2) ⋮ 9

Nên: 3(k + 1)3 + 15(k + 1) ⋮ 9

Vậy: 3n3 + 15n chia hết cho 9 với mọi n ∈ N*