K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2016

Coi chữ số tận cùng của n là h

Với n lẻ :

\(n^5=n^4.n=\left(...1\right).n=\left(..1\right)\left(...a\right)=\left(...a\right)\)

Tương tự với n chẵn :

\(n^5=n^4.n=\left(...6\right).n=\left(..6\right)\left(...a\right)=\left(...a\right)\)

Vậy ...

8 tháng 2 2017

Không hiểu nổi @trần thùy dung CTV viết cái gì nữa:

\(A=n^5-n\)

 A chia hết cho 5 với mọi n thuộc N (*)

\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)=> A chia hết cho 2 (**)

(*)&(**)=> A chia hết cho 10=> A tận cùng là 0 vậy n^5 và n có số tận cùng = nhau=> dpcm

p/s: (*) nếu cần có thể c/m nhưng nó thuộc t/c do vậy ko cần c/m nữa

4 tháng 3 2016

xét từng chữ số tận cùng của n

VD Với n có tận cùng là 1 thì n^5 có tận cùng là 1

     Với n có tận cùng là 2 thì n^4 có tận cùng là 6.Suy ra n^5 có tận cùng là 2

     Với n có tận cùng là 3 thìn^4 có tận cùng là 1.Suy ra n^5 có tận cùng là 3

                                ........ 

Theo mình là như thế

4 tháng 3 2016

xét từng chữ số tận cùng của n

VD Với n có tận cùng là 1 thì n^5 có tận cùng là 1

     Với n có tận cùng là 2 thì n^4 có tận cùng là 6.Suy ra n^5 có tận cùng là 2

     Với n có tận cùng là 3 thìn^4 có tận cùng là 1.Suy ra n^5 có tận cùng là 3

                                ........ 

Tự tìm nha

Nếu n và n5 có chữ số tận cùng giống nhau

⇒n5−n⋮10⇒n5−n⋮10

Ta có:

n5−nn5−n

=n(n4−1)=n(n4−1)

=n(n2−1)(n2+1)=n(n2−1)(n2+1)

=n(n−1)(n+1)(n2−4+5)=n(n−1)(n+1)(n2−4+5)

=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)

=n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)=n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)

Vì n(n−1)(n+1)(n−2)(n+2)n(n−1)(n+1)(n−2)(n+2) là tích của 5 số tự nhiên liên tiếp

⇒n(n−1)(n+1)(n−2)(n+2)⋮5⇒n(n−1)(n+1)(n−2)(n+2)⋮5

Vì n(n−1)n(n−1) là tích của hai số tự nhiên liên tiếp

⇒n(n−1)(n+1)(n−2)(n+2)⋮2⇒n(n−1)(n+1)(n−2)(n+2)⋮2

⇒n(n−1)(n+1)(n−2)(n+2)⋮10(1)⇒n(n−1)(n+1)(n−2)(n+2)⋮10(1)

Ta có: 5n(n−1)(n+1)(n−2)(n+2)⋮55n(n−1)(n+1)(n−2)(n+2)⋮5

Vì n(n−1)n(n−1) là tích của hai số tự nhiên liên tiếp

⇒5n(n−1)(n+1)⋮2⇒5n(n−1)(n+1)⋮2

⇒5n(n−1)(n+1)⋮10(2)⇒5n(n−1)(n+1)⋮10(2)

Từ (1) và (2) suy ra

n(n+1)(n−1)(n−2)(n+2)+5n(n−1)(n+1)⋮10n(n+1)(n−1)(n−2)(n+2)+5n(n−1)(n+1)⋮10

⇒n5−n⋮10⇒n5−n⋮10

Vậy n và n5 có chữ số tận cùng giống nhau

hok tốt

1 tháng 3 2020

Ta có: \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2-4+5\right)=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2+1\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)\left(n+1\right)\)

Ta thấy (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiếp đồng thời chia hết cho 2 và 5

hay (n-2)(n-1)n(n+1)(n+2) chia hết cho 10 (1)
Ta lại có: (n-1)n(n+1) là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 2

=> 5(n-1)(n+1) chia hết cho 10 (2)

Từ (1)(2) => \(n^5-n\)chia hết cho 10 hay có chữ số tận cùng là 0

=> đpcm

gọi chữ số tận cùng của 7n là:a

ta có:7n+4=7n.74=(...a).2401=...a

=>đpcm

6 tháng 3 2020

b/ Nếu n^5 và n giống chữ số tận cùng thì n^5-n tận cùng là 0 chia hết cho 10.Ta cần đi CM n^5-n chia hết 10

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+2n\left(n-1\right)\left(n+1\right)\)

\(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\&2\).Mà 5 và 2 là 2 số nguyên tố cùng nhau nên \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮10\)

\(5n\left(n-1\right)\left(n+1\right)⋮5\&2\).Mà 5,2 nguyên tố cùng nhau nên \(5n\left(n-1\right)\left(n+1\right)⋮10\)

Từ đó có n^5-n chia hết cho 10 suy ra ĐPCM

19 tháng 8 2018

Nếu n và n5 có chữ số tận cùng giống nhau

\(\Rightarrow n^5-n⋮10\)

Ta có:

\(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

\(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\)

\(n\left(n-1\right)\) là tích của hai số tự nhiên liên tiếp

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮2\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮10\left(1\right)\)

Ta có: \(5n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\)

\(n\left(n-1\right)\) là tích của hai số tự nhiên liên tiếp

\(\Rightarrow5n\left(n-1\right)\left(n+1\right)⋮2\)

\(\Rightarrow5n\left(n-1\right)\left(n+1\right)⋮10\left(2\right)\)

Từ (1) và (2) suy ra

\(n\left(n+1\right)\left(n-1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮10\)

\(\Rightarrow n^5-n⋮10\)

Vậy n và n5 có chữ số tận cùng giống nhau

9 tháng 7 2016

Hai số có chữ số tận cùng giống nhau nên ta sẽ đi CM: n^5 - n chia hết cho 10
Dễ thấy n^5 và n cùng tính chất chẵn lẻ nên n^5 -n chia hết cho 2 (1) 
Ta có: n^5 - n = n(n+1)(n-1)(n²+1) 
= n(n+1)(n-1)(n+2)(n-2) + 5n(n-1)(n+1) 
Số hạng cuối thì chia hết cho 5 còn số hạng đầu là tích của 5 số tự nhiên liên tiếp nên cũng chia hết cho 5 => n^5-n chia hết cho 5 (2) 
Từ (1), (2) và do 2 và 5 là hai số nguyên tố cùng nhau ta sẽ có đpcm!

9 tháng 7 2016

kcj đâu , ok !!!!!!!!

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý