Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, P= ( a+3 ) ( a-5+a+1) = (a+3) (2a-4)=2 (a+3)(a-2) chia hết cho 2
b, Q= 9a2-15a-6-a2+a+6= 8a2-14a=2(4a2-7a) chia hết cho 2
Bài giải
a) Ta có: P = (a + 3)(a - 5) + (a + 3)(a + 1) (Với a \(\inℤ\))
=> a sẽ có thể là một số lẻ hay một số chẵn
Xét a là số lẻ:
=> P = (a + 3)(a - 5 + a + 1)
=> P = (a + 3)(2a - 4)
Vì a là số lẻ nên a + 3 là số chẵn
=> P là số chãn
=> ĐPCM
Với a là số chẵn:
Vì a là số chẵn nên 2a + 4 cũng là số chãn
=> P là số chãn
=> ĐPCM
a) \(P=\left(a+3\right)\left(a-5\right)+\left(a+3\right)\left(a+1\right)=\left(a+3\right)\left(a-5+a+1\right)=\left(a+3\right)\left(2a-4\right)\)
\(=2\left(a+3\right)\left(a-2\right)\)là số chẵn.
b) \(Q=\left(a-2\right)\left(a+3\right)-\left(a+2\right)\left(3-a\right)=\left(a-2\right)\left(a+3\right)+\left(a+2\right)\left(a-3\right)\)
\(=a^2+a-6+a^2-a-6=2a^2-12=2\left(a^2-6\right)\)là số chẵn
Ta có: \(A=a^3+3a^2+2a\)
\(=a\left(a^2+3a+2\right)\)
\(=a\left(a^2+a+2a+2\right)\)
\(=a\left[a\left(a+1\right)+2\left(a+1\right)\right]\)
\(=a\left(a+1\right)\left(a+2\right)\)
Ta có: a; a+1 và a+2 là ba số nguyên liên tiếp nên \(a\left(a+1\right)\left(a+2\right)⋮3\)
hay \(A⋮3\)(đpcm)