Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Modulo 3, nha bạn.)
Giả sử tồn tại 5 số thoả đề.
Trong 5 số nguyên dương phân biệt đó sẽ xảy ra 2 trường hợp:
1. Có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.
Khi đó, tổng 3 số này chia hết cho 3 (vô lí).
2. 5 số này khi chia cho 3 chỉ còn 2 loại số dư mà thôi.
Khi đó, theo nguyên lí Dirichlet thì tồn tại 3 số cùng số dư khi chia cho 3. Tổng 3 số này chia hết cho 3 (vô lí nốt).
Vậy điều giả sử là sai.
Gọi n số đó là \(a_1=\left(n+1\right)!+2;a_2=\left(n+1\right)!+3;...;a_n=\left(n+1\right)!+n\).
Khi đó \(a_k=\left(n+1\right)!+k+1\). (Với \(1\le k\le n\))
Dễ thấy \(k+1\le n+1\) nên \(\left(n+1\right)!⋮k+1\Rightarrow a_k⋮k+1\). Mà \(a_k>k+1\) nên \(a_k\) là hợp số.
Vậy...
Xét khoảng \(\left(n+1\right)!+2\)đến \(\left(n+1\right)!+n+1\).
Khoảng này có \(n\)số tự nhiên.
Với \(k\)bất kì \(k=\overline{2,n+1}\)thì
\(\left(n+1\right)!+k⋮k\)do đó không là số nguyên tố.
Do đó ta có đpcm.
5676538564875x787866688089=bao nhieu mn oi