K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

Gọi 3 số tự nhiên đó lần lượt là n; n+1; n+2

=> Tích của 3 số là n(n+1)(n+2)

+ TH1: n chia hết cho 3

=> n(n+1)(n+2) chia hết cho 3

+ TH2: n chia 3 dư 1

Mà 2 chia 3 dư 2

=> n + 2 chia hết cho 3

=> n(n+1)(n+2) chia hết cho 3

+ TH3: n chia 3 dư 2

Mà 1 chia 3 dư 1

=> n+1 chia hết cho 3

=> n(n+1)(n+2) chia hết cho 3

KL: Tích 3 số tự nhiên liên tiếp luôn chia hết cho 3 (Đpcm)

28 tháng 12 2015

còn ai thức ko thì tick mình nhé

23 tháng 12 2018

a ) vì 2 số tự nhiên liên tiếp nhau sẽ có một số chẵn và một số lẽ ( Ví dụ : 2 và 3 _ 7 và 8_12345 và 12346 ) 

     và tích của một số chẵn và một số lẽ phải là một số chẵn ( Ví dụ : 2 x 3 = 6_ 7 x 8 = 56 ........)

     mà một số chẵn thì luôn luôn chia hết cho 2 

    suy ra : tích của hai số tự nhiên liên tiếp nhau chia hết cho 2 ( điều phài chứng minh ) 

23 tháng 12 2018

a, bởi vì trong 2 số tự nhiên liên tiếp thì chắc chắn có 1 số chẵn => chia hết cho 2.

29 tháng 7 2021

đéo bt nha bn có lm thì mới có ăn ko lm mà đòi có ăn thì ăn cứt ăn đầu bùi nha bn

17 tháng 11 2021

ủa ? nhột hay gì v em ?

26 tháng 1 2016

Gọi 3 stn liên tiếp là a; a+1; a+2.

Ta có: 

a + (a+1) + (a+2) = a + a + 1 + a + 2 = 3a + 3 = 3.(a+1) chia hết cho 3.

Gọi 4 stn liên tiếp là a; a+1; a+2; a+3.

Ta có:

a + (a+1) + (a+2) + (a+3) = a+a+1+a+2+a+3=4a+6=4a+4+2=4.(a+1)+2 chia 4 dư 2 nên không chia hết cho 4

Vậy...

26 tháng 1 2016

Gọi 3 số tự nhiên liên tiếp là 3k,3k+1,3k+2

Tổng 3 số là: 3k+3k+1+3k+2=9k+3 chia hết cho 3

Gọi 4 số tự nhiên liên tiếp là 4k,4k+1,4k+2,4k+3

Tổng 4 số là: 4k+4k+1+4k+2+4k+3=12k+6 ko chia hết cho 4

 

31 tháng 10 2017

Ta có  trong hai số tự nhiên liện tiếp thì lúc nào cũng có một số chẵn và một số lẻ số chẵn đó sẽ chia hết cho 2 (đpcm)
b, 3 số tự nhiên liên tiếp sẽ có dangh 3k;3k+1;3k+2(với k thuộc N)
      Tích của 3 số đó là : 3k + 3k+1 +3k +2 = 3.(3k+3) chia hết cho 3( đpcm)

31 tháng 10 2017

a)Gọi 2 số tự nhiên liên tiếp đó là a và b 

Do là 2 STN liên tiếp nên a hoặc b sẽ là số chẵn

=> ab chia hết cho 2

 Vậy.............................

b) Gọi 3 số tự nhiên liên tiếp là 3k; 3k+1; 3k+2  ( k \(\in\) N)

 Mà 3k luôn chia hết cho 3

=> 3k(3k+1)(3k+2) luôn chia hết cho 3

     Vậy......................................

2 tháng 10 2016

a . Ta có : Vì hai số liên tiếp chiaheets cho 2 

=> số lẻ x số chẵn sẽ chia hết cho 2

vì 1 số chẵn x bất kì số nào cũng là số chẵn

13 tháng 10 2018

Gọi 2 số nguyên liên tiếp là:  và  a+1

Tích của chúng là:  A  =  a(a+1)

  • Nếu:  a = 2k thì chia hết cho 2  
  • Nếu:  a = 2k+1 thì:  a+1 = 2k+2   chia hết cho 2  =>  A  chia hết cho 2

=>  đpcm

10 tháng 7 2015

a) Gọi 2 số tự nhiện liên tiếp là n; n+1 

Ta có: 

Nếu n có dạng 2k thì n.(n+1) 

= 2k.(2k+1) chia hết cho 2 (vì 2k chia hết cho 2)

Nếu n có dạng 2k + 1 thì n.(n+1) 

= (2k+1).(2k+1+1)

= (2k+1).(2k+2) chia hết cho 2 (vì 2k+2 chia hết cho 2)

b) Gọi 3 số tự nhiên liên tiếp là n;n+1;n+2 

Ta có: 

Nếu n có dạng 3k thì n.(n+1).(n+2) 

= 3k.(3k+1).(3k+2) chia hết cho 3 (vì 3k chia hết cho 3)

Nếu n có dạng 3k+1 thì n.(n+1).(n+2) 

= (3k+1).(3k+1+1).(3k+2+1)

= (3k+1).(3k+2).(3k+3) chia hết cho 3 vì (3k+3 chia hết cho 3) 

Nếu n có dạng 3k+2 thì n.(n+1).(n+2) 

= (3k+2).(3k+2+1).(3k+2+2)

= (3k+2).(3k+3).(3k+4) chia hết cho 3 (vì 3k+3 chia hết cho 3) 

 

10 tháng 7 2015

Cứ li ke ủng hộ chú ấy mỏi tay :D