K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2015

=> 22.S = \(1-\frac{1}{2^2}+\frac{1}{2^4}-............+\frac{1}{2^{2000}}-\frac{1}{2^{2002}}\)

=> 4S + S = \(1-\frac{1}{2^2}+\frac{1}{2^4}-......+\frac{1}{2^{2000}}-\frac{1}{2^{2002}}+\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-....+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)

=> 5S = \(1-\frac{1}{2^{2004}}

12 tháng 7 2017

A=19,39033602

23 tháng 3 2020

làm lần lượt các số hạng rồi sẽ ra

2 tháng 4 2018

2+12345678-5=

26 tháng 7 2015

Ta có: 9A=1+1/32+...+1/398

Vậy 10A=(1+1/32+...+1/398) + (1/32+1/34+...+1/3100)

10A=1+2(1/32+1/34+...+1/398)+1/3100

Vậy 10A>1 suy ra A > 0,1 suy ra người ra đề đã đặt sai đề!

2 tháng 3 2020

sai nha

25 tháng 7 2015

\(A

3 tháng 6 2017

Đặt A là tên biểu thức

\(A=1-\frac{15}{16}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{4n^2}\)

\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2^2n^2}\)

\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(A< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(A< \frac{1}{2^2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(A< \frac{1}{2^2}\left(1-\frac{1}{n}\right)=\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)(đpcm)

12 tháng 7 2017

Ta có:

\(\frac{1\div2003+1\div2004-1\div2005}{5\div2003+5\div2004-5\div2005}\)    -     \(\frac{2\div2002+2\div2003-2\div2004}{3\div2002+3\div2003-3\div2004}\)

Đơn giản đi hết ta sẽ còn:

\(\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)

2.

Ta có: 

Số khoảng cách của các số trong dãy là  23 = 8

=> Tổng của dãy dưới sẽ gấp 8 lần tổng dãy trên.

=> 3025 . 8 = 24200

10 tháng 7 2015

\(A=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

\(\Rightarrow7^2.A=\frac{1}{1}-\frac{1}{7^2}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)

\(\Rightarrow49A+A=1-\frac{1}{7^{100}}\)

\(50A=1-\frac{1}{7^{100}}

1 tháng 4 2023

???