Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 số đó là a;b;c. Do vai trò của a;b;c là như nhau, không mất tính tổng quát, giả sử \(a\ge b\ge c\)
Từ giả thiết ta có: \(\left\{{}\begin{matrix}abc=1\\a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\end{matrix}\right.\) \(\Rightarrow\) a;b;c không thể đồng thời bằng 1 (vi phạm giả thiết thứ 2)
Nếu a;b;c đều nhỏ hơn 1 \(\Rightarrow abc< 1\) (trái giả thiết)
Nếu a;b;c đều lớn hơn 1 \(\Rightarrow abc>1\) (trái giả thiết)
\(\Rightarrow\) Chỉ có 1 hoặc 2 số trong 3 số lớn hơn 1
Giả sử có 2 số lớn hơn 1 \(\Rightarrow a;b>1\)
Từ giả thiết thứ 2: \(a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow a+b+\frac{1}{ab}>\frac{1}{a}+\frac{1}{b}+ab\)
\(\Leftrightarrow a+b+\frac{1}{ab}>\frac{a+b}{ab}+ab\)
\(\Leftrightarrow a+b-\frac{a+b}{ab}+\frac{1}{ab}-ab>0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{ab-1}{ab}\right)-\frac{\left(ab-1\right)\left(ab+1\right)}{ab}>0\)
\(\Leftrightarrow\left(ab-1\right)\left(\frac{a+b}{ab}-\frac{ab+1}{ab}\right)>0\)
\(\Leftrightarrow a+b-ab-1>0\)
\(\Leftrightarrow\left(a-1\right)\left(1-b\right)>0\) (vô lý do \(\left\{{}\begin{matrix}a>1\\b>1\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)\left(1-b\right)< 0\))
Vậy điều giả sử là sai
Hay trong 3 số có đúng 1 số lớn hơn 1
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương. - Tìm trên Google
help me