Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính đc x^2-y^2-z^2=a^2-^b^2-c^2
mà a^2=b^2+c^2
suy ra x^2-y^2-z^2=0
suy ra x^2=y^2+z^2
vậy x;y;z là đọ dài của tam giác vuông
---------------------------------------------------------------------
li-ke cho mình nhé bnQuynh Anh Quach
Định lý Pitago đã học ở lớp 7, trong chương trình lớp 8 lẽ ra không cần giải thích lại?
Đặt 1 cạnh góc vuông của tam giác là \(\overline{ab}\) thì cạnh huyền là \(\overline{ba}\), với a;b là các chữ số từ 1 đến 9 và \(a>b\)
Đặt cạnh góc vuông còn lại là \(c\Rightarrow10\le c< 99\)
Theo định lý Pitago:
\(\left(\overline{ab}\right)^2+c^2=\left(\overline{ba}\right)^2\Leftrightarrow\left(10a+b\right)^2+c^2=\left(10b+a\right)^2\)
\(\Leftrightarrow100a^2+20ab+b^2+c^2=100b^2+20ab+a^2\)
\(\Leftrightarrow c^2=99\left(b^2-a^2\right)\)
\(\Rightarrow c^2⋮99\) \(\Rightarrow c\) chia hết cho 2 ước nguyên tố của 99 là 3 và 11
\(\Rightarrow c⋮33\Rightarrow c=\left\{33;66\right\}\)
- Với \(c=33\Rightarrow b^2-a^2=11\Leftrightarrow\left(b-a\right)\left(b+a\right)=11\)
\(\Rightarrow\left\{{}\begin{matrix}b-a=1\\b+a=11\end{matrix}\right.\) \(\Rightarrow a=5;b=6\)
- Với \(c=66\Rightarrow b^2-a^2=44\Rightarrow\left(b-a\right)\left(b+a\right)=44\)
\(\Rightarrow\left(a;b\right)=\left(10;12\right)\) đều lớn hơn 9 (loại)
Vậy 3 cạnh của tam giác vuông đó là 33; 56; 65
Đến đây thì 1 vấn đề xuất hiện, lớp 8 chưa học đường tròn, đường tròn nội tiếp thì càng không, vậy làm sao để tính bán kính đường tròn nội tiếp tam giác?
Gọi x; y; z là độ dài ba cạnh tam giác vuông với z là cạnh huyền thì theo đề bài,ta có:
\(z>y\ge x\ge1\) và
\(\hept{\begin{cases}x^2+y^2=z^2\left(\text{Định lí Pythagoras}\right)\\\frac{xy}{2}=x+y+z\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy=z^2\left(1\right)\\xy=2\left(x+y+z\right)\left(2\right)\end{cases}}\)
Thay (2) lên (1) suy ra \(z^2=\left(x+y\right)^2-4\left(x+y+z\right)\)
\(\Leftrightarrow z^2+4z=\left(x+y\right)^2-4\left(x+y\right)\)
\(\Leftrightarrow z^2+4z+4=\left(x+y\right)^2-4\left(x+y\right)+4\)
\(\Leftrightarrow\left(z+2\right)^2=\left(x+y-2\right)^2\) (*)
Do \(z>y\ge x\ge1\) nên cả hai vế cùng không âm.
Do đó từ (*) suy ra \(z+2=x+y-2\Leftrightarrow z=x+y-4\)
Thay ngược lên (2) và giải tiếp bằng cách phân tích đa thức thành nhân tử và lập bảng xét ước:P.
Note: Em không chắc đâu ạ!
a,b,c là số đo các cạnh của tam giác nên là các số dương, dễ thấy x>y;z
nếu x;y;z là số đo các cạnh của 1 tam giác vuông khác thì x là cạnh huyền
ta xét x2=y2+z2 <=> \(\left(9a+4b+8c\right)^2=\left(4a+b+4c\right)^2+\left(8a+4b+7c\right)^2\)
<=> 81a2+16b2+64c2+72ab+64bc+144ca=80a2+17b2+65c2+72ab+64bc+144ca
<=>a2=b2+c2(đúng do a;b;c là số đo 3 cạnh của 1 tam giác vuông với a độ dài là cạnh huyền,áp dụng định lý Pytago)
Ta đã chứng minh được : x2=y2+z2 .Theo định lý Pytago đảo suy ra x;y;z cũng là số đo 3 cạnh của 1 tam giác vuông
Ta có a,b,c là số đo các cạnh của tam giác nên là các số dương.
Ta thấy x>y;z
Nếu x;y;z là số đo các cạnh của 1 tam giác vuông khác thì x là cạnh huyền
Xét x^2=y^2+z^2 <=>( 9a + 4b + 8c)^2 = (4a + b + 4c)^2+ (8a + 4b + 7c)^2
<=> 81a^2+64c^2+72ab+64bc+144ca=80a^2+17b2^+65c^2+72ab+64bc+144ca
<=>a^2=b^2+c^2
do a;b;c là số đo 3 cạnh của 1 tam giác vuông với a độ dài là cạnh huyền,
Áp dụng định lý Pytago.Ta chứng minh được :
x^2=y^2+z^2
=> x;y;z là số đo 3 cạnh của 1 tam giác vuông (Theo định lý Pytago đảo )
NHỚ TK MK NHALưu Đức Mạnh