K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2018

đố bạn làm được câu này cho m thuộc N. cmr 5m^3+40m chia hết cho 15

19 tháng 10 2020

c, Giả sử \(C⋮169\Rightarrow4C=\left(2n+5\right)^2+39⋮169\Rightarrow4C⋮13\)

\(\Rightarrow\left(2n+5\right)^2⋮13\Rightarrow\left(2n+5\right)^2⋮169\)

\(\Rightarrow\left(2n+5\right)^2+39\) không chia hết cho 169

\(\Leftrightarrow4C\) không chia hết cho 169 (Vô lí)

\(\Rightarrowđpcm\)

19 tháng 10 2020

a, Giả sử \(A⋮121\Rightarrow4A=4n^2+12n+9+11=\left(2n+3\right)^2+11⋮11\)

\(\Rightarrow\left(2n+3\right)^2⋮11\Rightarrow\left(2n+3\right)^2⋮121\)

\(\Rightarrow\left(2n+3\right)^2+11\) không chia hết cho 121

\(\Leftrightarrow4A\) không chia hết cho 121 (Vô lí)

\(\Rightarrowđpcm\)

b, Giả sử \(B⋮49\Rightarrow4B=\left(2n+3\right)^2+7⋮49\)

\(\Rightarrow\left(2n+3\right)^2⋮7\Rightarrow\left(2n+3\right)^2⋮49\)

\(\Rightarrow\left(2n+3\right)^2+7\) không chia hết cho 49

\(\Leftrightarrow4B\) không chia hết cho 49 (Vô lí)

\(\Rightarrowđpcm\)

NV
21 tháng 11 2021

Do n nguyên dương, đặt \(n=m+1\) với m là số tự nhiên

\(\Rightarrow A=2^{3\left(m+1\right)-1}+2^{3\left(m+1\right)+1}+1=2^{3m+2}+2^{3\left(m+1\right)+1}+1\)

\(=4.8^m+2.8^{m+1}+1\)

Do \(8\equiv1\left(mod7\right)\Rightarrow\left\{{}\begin{matrix}8^m\equiv1\left(mod7\right)\\8^{m+1}\equiv1\left(mod7\right)\end{matrix}\right.\)

\(\Rightarrow4.8^m+2.8^{m+1}+1\equiv4+2+1\left(mod7\right)\)

\(\Rightarrow4.8^m+2.8^{m+1}+1⋮7\)

21 tháng 11 2021

có cách nào k dùng mod k ạ?

14 tháng 8 2019

\(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)

Vì n là số lẻ => \(n-1;n+1;n+3\) là 3 số chẵn liên tiếp

Mà 3 số chẵn liên tiếp luôn \(⋮48\)

\(\Rightarrowđpcm\)

14 tháng 8 2019

\(n^3+3n^2-n-3\)

\(=n^2\times\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\times\left(n^2-1\right)\)

\(=\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)\)

Vì n là số lẻ nên \(n⋮̸2\)

\(\Rightarrow n+3⋮2;n-1⋮2;n+1⋮2\)

\(\Rightarrow\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)⋮48\)

\(\Rightarrow n^3+3n^2-n-3⋮48\)