Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n là số lẻ n có dạng : 2k + 1 ( k\(\in\) N)
A = 2018 + ( 2k+ 1+ 1)2
A = 2018 + (2k+2)2
A = 2018 + 4.( k+1)2 ⇒ A ⋮ 2 Nếu A là số chính phương
⇒ A ⋮ 4 ( tính chất 1 số chính phương )
⇒ 2018 ⋮ 4 ( vô lý)
Nếu n là số chẵn n =2k ( k \(\in\) N)
A = 2018 + ( 2k + 1)2;
2k + 1 không chia hết cho 4 ⇒ ( 2k+1)2 : 4 dư 1 ( tc của 1 số chính phương)
A = 2018 + ( 2k + 1)2 : 4 dư 3 ⇒ A không phải là số chính phương vì một số chính phương chia 4 chỉ có thể dư 0 hoặc 1.
Vậy không thể tồn tại n để 2018 + ( n +1)2 là số chính phương
Gỉa sử 2018 + \(n^2\) là số chính phương => 2018 + \(n^2\) = \(a^2\) ( a là số tự nhiên )
=> 2018 = \(a^2\)- \(n^2\) = (a - n)(a + n)
Ta có: (a + n) - (a - n) = a + n - a +n = 2n ( chia hết cho 2 )
\(\Rightarrow\) 2 số m - n và m + n phải có cùng tính chẵn lẻ
Mà 2018 = 1.2018 = 2.1009 với các cặp số (1;2018) và (2;1009) đều không cùng tính chẵn lẻ
Vậy ta kết luận: 2018 + n^2 không là số chính phương
n2 chỉ có thể có các chữ số tận cùng là 0,1,4,5,6,9
Nên n2 + 2002 có các chữ số tận cùng lần lượt là 2;3;8;7;8;3
Mà số có tận cùng là các chữ số 2,3,7,8 ko là số chính phương.
Do đó: n2 + 2002 không là số chính phương với mọi n là STN.
Giả sử : n^2 + 2006 là số chính phương
=> n2 + 2006 = k2 ( k thuộc N )
=> 2006 = k2 - n2 = ( k - n ).( k + n )
Ta có : 2006 = 2 x 1003
=> k - n = 2 => n = 2 + k
k + n = 1003
=> k + 2 + k = 1003
=> 2k = 1001 => k = 1001/2 ( loại )
Vậy giả thiết không đúng => n^2 + 2006 ko là số chính phương
kudo shinichi làm sai đề rồi phải như thế này nè:
để n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
k cho tớ nha
ai k mh mh k lại
Đáp án: theo đề bài :
ab+4=x^2
<=>x^2-4=ab
<=>x^2-2^2=ab =>(x+2)(x-2)=ab
Với b=a+4 thì ab+4 là số chính phương.
Chứng minh: Với b=4 thì
ab+4= a(a+4) +4 =a2+4a+4=(a+2)2
Đặt ab + 4 = m22 (m ∈ N)
⇒ab = m22− 4 = (m − 2) (m + 2)
⇒b =(m−2).(m+2)a(m−2).(m+2)a
Ta có:m=a+2⇒⇒ m-2=a
⇒⇒b=a(a+4)aa(a+4)a=a+4
Vậy với mọi số tự nhiên a luôn tồn tại b = a + 4 để ab + 4 là số chính phương.
giả sử n^2+2008 là 1 số chính phương
suy ra n^2+2008=a^2(a>0)
a^2-n^2=2008
(a-n)(a+n)=2008
thấy a+n>a-n
suy ra a+n)(a-n)= mấy nhân mấy đó (mik chưa tính)
thay vào tìm đc n
nhưng n không là stn
nên n^2+2008 ko là số chính phương vơi n là stn
Đặt \(n^2+2018=m^2\)
Ta có một số chính phương chia cho 4 dư 0 hoặc 1
\(n^2+2018=m^2\)=>\(m^2-n^2=2018\)
xét số dư của \(m^2-n^2\)cho 4
ta có bảng
\(m^2\) 0 1 1 0
\(n^2\) 0 1 0 1
\(m^2-n^2\) 0 0 1 -1
mà \(2018\equiv2\left(mod4\right)\)
mà một số cp chia co 4 dư o hoặc 1
vậy o tìm đc số thoả mãn
T I C K nha!