Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath
=> Nếu số đó chia 9 dư k
=> Tổng các chữ số chia 9 dư k
Vậy hiệu của chúng có số dư khi chia cho 9 là: k - k = 0
Vậy chia hết cho 9
Chứng tỏ rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9? Từ đó, chứng tỏ C= 8n + 111..1 ( n chữ số 1; n thuộc N* ) chia hết cho 9?
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm
a = 10222 - 1
Nên n = (10222 - 1)2 + 8
n = 999...98000..09 (221 chữ số 9 và 211 chữ số 0 liên tiếp)
Vậy tổng các chữ số của n là:
S = 211.9 + 8 + 9 = 2006
Đáp số: 2006
Chúc bạn thành công
Tham khảo nhé:
Câu hỏi của nguyen lan anh - Toán lớp 6 | Học trực tuyến
Gọi số đó là 10^n*Xn+10^(n-1)*Xn-1+10^(n-2)*Xn-2+....... ta co :
10^n*Xn+10^(n-1)*Xn-1+10^(n-2)*Xn-2+....... - ( X1+X2+....+Xn-1+ Xn)=
=Xn(10^n-1)+Xn-1[10^(n-1)-1]+.....+X2(...
ta thấy rõ rằng tất cả các số hạng của tổng này đều chia hết cho 9
Chứng tỏ : Hiệu của một số và tổng các chữ số của nó chia hết cho 9
Bài chêp đủ phải là có n chữ số 1
cộng n chữ số 1 thì =n chứng tỏ A=8n+n=9n
đương nhiên nó chia hết cho 9.
Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath