K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+...+\frac{1}{98!}-\frac{1}{100!}\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

Vậy \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\left(đpcm\right)\)

12 tháng 1 2020

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\left(\text{đpcm}\right)\)

12 tháng 1 2020

\(VT=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99.100}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}=VP\) (đpcm)

25 tháng 6 2021


\(\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{2}\frac{\text{5}}{\text{27}}-\text{10}\frac{\text{5}}{\text{6}}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\left(\text{1}\frac{\text{3}}{\text{7}}+\frac{\text{10}}{\text{3}}\right):\left(\text{12}\frac{\text{1}}{\text{3}}-\text{14}\frac{\text{2}}{\text{7}}\right)}=\frac{\left[\text{13}\frac{\text{1}}{\text{4}}-\left(\text{2}\frac{\text{5}}{\text{27}}+\text{10}\frac{\text{5}}{\text{6}}\right)\right].\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{100}}{\text{21}}:\frac{\text{-41}}{\text{21}}}\)

\(=\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{13}\frac{\text{1}}{54}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\frac{\text{25}}{\text{108}}.\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}\)

\(=\frac{\text{53}\frac{\text{1}}{\text{4}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\text{100}}{\frac{-\text{100}}{\text{41}}}=\text{-41}\)

28 tháng 6 2021

Giải :

\(\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{2}\frac{\text{5}}{\text{27}}-\text{10}\frac{\text{5}}{\text{6}}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\left(\text{1}\frac{\text{3}}{\text{7}}+\frac{\text{10}}{\text{3}}\right):\left(\text{12}\frac{\text{1}}{\text{3}}-\text{14}\frac{\text{2}}{\text{7}}\right)}=\frac{\left[\text{13}\frac{\text{1}}{\text{4}}-\left(\text{2}\frac{\text{5}}{\text{27}}+\text{10}\frac{\text{5}}{\text{6}}\right)\right].\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{100}}{\text{21}}:\frac{\text{-41}}{\text{21}}}\)

\(=\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{13}\frac{\text{1}}{54}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\frac{\text{25}}{\text{108}}.\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}\)

\(=\frac{\text{53}\frac{\text{1}}{\text{4}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\text{100}}{\frac{-\text{100}}{\text{41}}}=\text{-41}\)

~~Học tốt~~

3 tháng 11 2019

Ta có:

\(x^2+y^2=1\Rightarrow\left(x^2+y^2\right)^2=1\)(1)

Thay (1) vào \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)ta có:

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+2x^2y^2+y^4}{a+b}\)

\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+2x^2y^2+y^4\right).ab\)

\(\Leftrightarrow x^4ab+x^4b^2+y^4a^2+y^4ab=x^4ab+2x^2y^2ab+y^4ab\)

\(\Leftrightarrow x^4b^2+y^4a^2=2x^2y^2ab\)

\(\Leftrightarrow\left(x^2b\right)^2-2x^2y^2ab+\left(y^2a\right)^2=0\)

\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\)

\(\Leftrightarrow x^2b-y^2a=0\)

\(\Leftrightarrow x^2b=y^2a\)

\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\left(\frac{x^2}{a}\right)^{1002}=\left(\frac{y^2}{b}\right)^{1002}=\left(\frac{1}{a+b}\right)^{1002}\)

\(\Rightarrow\frac{x^{2004}}{a^{1002}}=\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}\)

\(\Rightarrow\frac{x^{2004}}{a^{1002}}+\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}+\frac{1}{\left(a+b\right)^{1002}}=\frac{2}{\left(a+b\right)^{1002}}\left(đpcm\right)\)

Chúc bạn học tốt!

20 tháng 12 2018

\(Q=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(Q=1-\frac{1}{n+1}=\frac{n}{n+1}\)

gọi d là UCLN của n,(n+1) ta có:

\(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow d=1}\)

=> Q là p/s tối giãn mà n khác 0 => Q ko thuộc Z

15 tháng 7 2018

\(4\cdot\left(\frac{1}{4}\right)^2+25\cdot\left[\left(\frac{3}{4}\right)^3\div\left(\frac{5}{4}\right)^3\right]\div\left(\frac{3}{2}\right)^3\)

\(=4\cdot\frac{1}{16}+25\cdot\left[\left(\frac{3}{4}\div\frac{5}{4}\right)^3\right]\div\left(\frac{3}{2}\right)^3\)

\(=\frac{1}{4}+25\cdot\left(\frac{3}{5}\right)^3\div\left(\frac{3}{2}\right)^3\)

\(=\frac{1}{4}+25\cdot\left(\frac{2}{5}\right)^3\)

\(=\frac{1}{4}+25\cdot\frac{8}{125}\)

\(=\frac{1}{4}\cdot\frac{8}{5}\)

\(=\frac{2}{5}\)

18 tháng 7 2018

\(4.\left(\frac{1}{4}\right)^2+25.\left[\left(\frac{3}{4}\right)^3:\left(\frac{5}{4}\right)^3\right]:\left(\frac{3}{2}\right)^3\)

\(=4.\frac{1}{16}+25\left[\left(\frac{3}{4}:\frac{5}{4}\right)^3:\right]:\left(\frac{3}{2}\right)^3\)

\(=\frac{1}{4}+25.\left(\frac{3}{5}\right)^3:\left(\frac{3}{2}\right)^3\)

\(=\frac{1}{4}+25.\left(\frac{2}{5}\right)^3\)

\(=\frac{1}{4}+25.\frac{8}{125}\)

\(=\frac{1}{4}+\frac{8}{5}\)

\(=\frac{2}{5}\)

9 tháng 8 2017

Ta có:

\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}.3=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)

\(\Rightarrow x+3=308\Leftrightarrow x=305\)

9 tháng 6 2017

sửa đề câu 1 :

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

sửa đề câu 2

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

20 tháng 6 2019

khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha 

\(\frac{1}{4}:x=-\frac{7}{20}\)

\(x=\frac{1}{4}:-\frac{7}{20}\)

\(x=-\frac{5}{7}\)

9 tháng 9 2019

\(\frac{3}{4}+\frac{1}{4}\div x=\frac{2}{5}\)

\(\Rightarrow\frac{1}{4}\div x=-\frac{7}{20}\)

\(\Rightarrow x=\frac{1}{4}\div\left(-\frac{7}{20}\right)\)

\(\Rightarrow x=-\frac{5}{7}\)