K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

Ta có: f(x)=x2+2

Cho f(x)=0 ⇒ x2+2=0 ⇒x2= -2 (vô lý với mọi x )

Vậy f(x)= x2-x-x+2 vô nghiệm (đpcm)

9 tháng 5 2018

Xin lỗi sai đề bucminh .Đề đúng nè

Ta có: f(x)=x2-2x+2

Cho : f(x)=x2-2x+2=0 => f(x)=(x2-2x+1)+1=0

=> f(x)=(x-1)2+1=0 (bất đẳng thức lớp 8 lận đó)

=> f(x)=(x-1)2= -1 (vô lý)

8 tháng 5 2018

Ta có :

\(f\left(x\right)=x^2-x-x+2\\ \Leftrightarrow x^2-x-x+1+1\\ \Leftrightarrow x\left(x-1\right)-\left(x-1\right)+1\\ \Leftrightarrow\left(x-1\right)^2+1\)

mà : \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+1\ge1\forall x\)

\(\Rightarrow\) Đa thức vô nghiệm.

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

9 tháng 4 2018

Ta có : 

\(x^2+2x+3\)

\(=\)\(x^2+2x+1+2\)

\(=\)\(\left(x^2+2x+1\right)+2\)

\(=\)\(\left(x+1\right)^2+2\ge2>0\)

Vậy đa thức \(x^2+2x+3\) không có nghiệm 

Chúc bạn học tốt ~ 

Vì f(x)=ax2+b mà f(0)=3 nên f(0)=a.0+b=3 => f(0)=b=3

Vì f(x)=ax2+b mà f(-2)=-9 nên  f(-2)=a.(-2)2+b=-9=>a.4+b=-9 Thay b= 3 ta được :a.4+3=-9=>a.4=-12=>a=-3

Vậy b=3 ;a=-3

nhớ k

Có 2 nghiệm 

Đặt B=0

=>x^2-9=0

=>x^2=9

=>x=3 hoặc x=-3

`B=x^2-9=0`

`-> x^2=0+9`

`-> x^2=9`

`-> x^2=(+-3)^2`

`-> x=+-3`

Vậy, đa thức `B` có `2` nghiệm là `x={3 ; -3}`.

28 tháng 4 2016

A+B+C= x2yz+xy2z+xyz2 =xyz (x+y+z)=xyz.1=xyz

b) x2+4x+4+1=x2+2x+2x+2+1=x(x+2)+(x+1)+1=(x+1)(x+1)+1=(x+1)2+1

cho (x+1)2 +1=0

-> (x+1)2=-1 (vô lý )

da thuc k co nghiem

c) f(x)=g(x)

-3x2+2x+1=-3x2-2+x

-3x2+3x2+2x-x=-1

x=-1

a: \(F\left(x\right)=x^3+2x^2+3x+4\)

\(G\left(x\right)=x^3-x^2+3x+1\)

b: \(F\left(x\right)+G\left(x\right)=2x^3+x^2+6x+5\)

\(F\left(x\right)-G\left(x\right)=3x^2+3\)

10 tháng 5 2022

f(x)=x+2x2+3x+4

g(x)=xtrừ x2+3x+1

18 tháng 12 2020

\(\left|x-2\right|+\left|x-4\right|=\left|x-2\right|+\left|4-x\right|\ge\left|x-2+4-x\right|=2\)

\(\left|x-3\right|\ge0\)

=> \(\left|x-2\right|+\left|x-4\right|+\left|x-3\right|\ge2\)

Dấu "=" xảy ra 

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x-2>0\\4-x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=3\\x-2< 0\\4-x< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\x>2\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\x< 2\\x>4\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x=3\)