K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2021

Ta có \(2^{p-1}\equiv1\left(\text{mod }p\right)\)

Ta có \(n.2^n\equiv m\left(p-1\right).2^{m\left(p-1\right)}\left(\text{mod }p\right)\Rightarrow n.2^n\equiv-m\equiv1\left(\text{mod }p\right)\)

\(\Rightarrow m=kp-1\left(k\in N\text{*}\right)\)

Vậy với \(n=\left(kp-1\right)\left(p-1\right)\left(k\in N\text{*}\right)\) thì \(n.2^n-1⋮p\)

28 tháng 12 2021

Chị em mãi đỉnh ạvui!! Cơ mà không dám giấu gì chị là em ko hiểu đâu ạ:( Chị có thể làm chi tiết hơn đc chị vì em rất thiểu năng ạ.

 

22 tháng 12 2015

VD: n=9(n>4), n+3=12 mà 12 và 9 không phải là 2 số nguyên tố cùng nhau, nên trong trường họp này điều cần chứng mình là sai. Tick mình nhé!

11 tháng 3 2017

dài thế ai mà làm được

5 tháng 4 2017
ai tk mk thì mk tk lại
25 tháng 5 2016

m và n là số tự nhiên => m , n ≥ 0 

p là số nguyên tố 

Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\) <=> p2 = ( m – 1 ).( m + n ) 

Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2

Chú ý : m – 1< m + n (1) 

Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 (2) 

Từ (1) và (2) ta có m – 1 = 1 và m + n = p2. Khi đó m = 2 và tất nhiên 2 + n = p2

Vậy p2 = n + 2 (Đpcm).

25 tháng 5 2016

m và n là số tự nhiên => m , n ≥ 0 
p là số nguyên tố 
Thỏa mãn p/m1 =m+n/p  <=> p2 = ( m – 1 )( m + n ) 
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2
Chú ý : m – 1< m + n ( 1 ) 
Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 ( 2 ) 
Từ ( 1 ) và ( 2 ) ta có m – 1 = 1 và m + n = p2.
Khi đó m = 2 và tất nhiên 2 + n = p2
Do đó A = p2 - n = 2

   

 

    
17 tháng 6 2021

nhanh len nhe