K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2022

\(A=\left(\dfrac{1}{x^2-1}+\dfrac{1}{x+1}\right):\left(\dfrac{1}{x-1}-\dfrac{1}{x}\right)\)

\(\Rightarrow A=\left(\dfrac{1}{\left(x-1\right)\left(x+1\right)}+\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\right):\left(\dfrac{x}{x\left(x-1\right)}-\dfrac{x-1}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{1+x-1}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-x+1}{x\left(x-1\right)}\)

\(\Rightarrow A=\dfrac{x}{\left(x-1\right)\left(x+1\right)}:\dfrac{1}{x\left(x-1\right)}\)

\(\Rightarrow A=\dfrac{x}{\left(x-1\right)\left(x+1\right)}.x\left(x-1\right)\)

\(\Rightarrow A=\dfrac{x^2}{x+1}\)

25 tháng 2 2022

đk : xkhác -1 ; 1 

\(A=\left(\dfrac{1+x-1}{\left(x+1\right)\left(x-1\right)}\right):\left(\dfrac{x-x+1}{x\left(x-1\right)}\right)=\dfrac{x}{\left(x+1\right)\left(x-1\right)}:\dfrac{1}{x\left(x-1\right)}=\dfrac{x^2}{x+1}\)

24 tháng 12 2017

Hỏi đáp ToánHỏi đáp Toán

a) Ta có: \(P=\left(\dfrac{3}{x+1}+\dfrac{x-9}{x^2-1}+\dfrac{2}{1-x}\right):\dfrac{x-3}{x^2-1}\)

\(=\left(\dfrac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{x-9}{\left(x+1\right)\left(x-1\right)}-\dfrac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{x-3}{x^2-1}\)

\(=\dfrac{3x-3+x-9-2x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{x-3}\)

\(=\dfrac{2x-14}{x-3}\)

b) Ta có: \(x^2-9=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=-3\left(nhận\right)\end{matrix}\right.\)

Thay x=-3 vào biểu thức \(P=\dfrac{2x-14}{x-3}\), ta được:

\(P=\dfrac{2\cdot\left(-3\right)-14}{-3-3}=\dfrac{-20}{-6}=\dfrac{10}{3}\)

Vậy: Khi \(x^2-9=0\) thì \(P=\dfrac{10}{3}\)

c) Để P nguyên thì \(2x-14⋮x-3\)

\(\Leftrightarrow2x-6-8⋮x-3\)

mà \(2x-6⋮x-3\)

nên \(-8⋮x-3\)

\(\Leftrightarrow x-3\inƯ\left(-8\right)\)

\(\Leftrightarrow x-3\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

\(\Leftrightarrow x\in\left\{4;2;5;1;7;-1;11;-5\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{4;2;5;7;11;-5\right\}\)

Vậy: Để P nguyên thì \(x\in\left\{4;2;5;7;11;-5\right\}\)

16 tháng 5 2023

Điều kiện xác định là `{(x-3 ne 0),(x(x-3) ne 0):}`

                 `<=>{(x ne 3),(x ne 0):}`

      `=>bb A`

16 tháng 5 2023

ĐCXĐ: \(\left\{{}\begin{matrix}x\ne0\\x-3\ne0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\ne0\\x\ne3\end{matrix}\right.\)

Đề sai rồi bạn

1 tháng 5 2022

ĐKXĐ: \(x\ne\pm1;x\ne0\)

a)\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)

\(=\left(\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)

\(=\dfrac{x^2+2x+1-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}:\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}.\dfrac{5\left(x-1\right)}{2x}-\dfrac{x^2-1}{x^2+2x+1}\)

\(=\dfrac{10}{x+1}-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)^2}\)

\(=\dfrac{10}{x+1}-\dfrac{x-1}{x+1}\)

\(=\dfrac{11-x}{x+1}\)

b) \(A=\dfrac{11-x}{x+1}=2\)

\(\Leftrightarrow11-x=2\left(x+1\right)\)

\(\Leftrightarrow11-x=2x+2\)

\(\Leftrightarrow-x-2x=2-11\)

\(\Leftrightarrow-3x=-9\)

\(\Leftrightarrow x=3\left(nhận\right)\)

c) -Để \(A=\dfrac{11-x}{x+1}\in Z\) thì:

\(\left(11-x\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(12-x-1\right)⋮\left(x+1\right)\)

\(\Rightarrow12⋮\left(x+1\right)\)

\(\Rightarrow\left(x+1\right)\inƯ\left(12\right)\)

\(\Rightarrow\left(x+1\right)\in\left\{1;2;3;4;6;12;-1;-2;-3;-4;-6;-12\right\}\)

\(\Rightarrow x\in\left\{2;3;5;11;-2;-3;-4;-5;-7;-13\right\}\)

 

 

 

1 tháng 5 2022

em cảm ưn gất nhìuuuuu:33