Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{2003}+5^{2002}+5^{2001}\)
\(=5^{2001}\left(5^2+5+1\right)\)
\(=5^{2001}.31\)chia hết cho 31.
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
52003 + 52002 + 52001 chia hết cho 31
= 52003 + 5 2002 + 52001
= 52001. \(5^2+5^{2001}.5+5^{2001}.1\)
= 52001. (\(5^2+5+1\))
= 52001. 31\(⋮\)31
= Vậy 5 2003 + 52002 + 52001 chia hết cho 31
2/
A=1+2+2^2+...+2^10
2.A= 2+2^2+...+2^11
=>2A-A = 2^11-1=> A = 2^11 -1=B
Vậy A=B
1)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31
Vì 31 chia hết cho 31nên
52001.31chia hết cho 31 hay 52003+52002+52001 chia hết cho 31
2) A = 1+2+22+......+29+210
=>2A=2+22+23+...+211
=>2A-A=2+22+23+...+211-(1+2+22+...+29+210)
=>A=211-1
Vậy A=B=211-1