Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
aaaaaa=100000a+10000a+1000a+100a+10a+a
=a.(100000+10000+1000+100+10+1)
=a.111111
vì 111111 chia hết cho 7 nên
aaaaaa chia hết cho 7
Lời giải:
$4^{2021}+19=2^{4042}+19=2^{3.1347+1}+19=8^{1347}.2+19$
$\equiv 1^{1347}.2+19\pmod 7$
$\equiv 21\equiv 0\pmod 7$
Tức là $4^{2021}+19\vdots 7$
Ta có đpcm.
Ta có:
10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) = 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.
Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3
=> 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3
=> 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
2010100+201099
=201099.(2010+1)
=201099.2011 chia hết cho 2011
=> 2010100+201099 chia hết cho 2011
2010100+ 201099
= 201099 .(2010+1)
= 201099 . 100 chia hết cho 2011
=> 2010100 + 201099 chia hết cho 2011
tk mk nha