K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(n=2004^4+2004^3+2004^2+23\)

\(=0^4+0^3+0^2+2\)(mod 3)

Vậy n = 3k + 2n = 3k + 2 (k ∈ N) nên n không là số chính phương (đpcm) 
Suy ra n = 20044 + 20043 + 20042 + 23 không phải là số chính phương.

5 tháng 7 2017

trong câu hỏi tương tự có bn ơi

...

...

16 tháng 7 2017
Ta có: 111...11 = (10mũ200 - 1)/9 222...22 = 2.(10 mũ 100 - 1)/9 Biến đổi tiếp nhé
5 tháng 1 2018

biến đôi iếp thế nào

5 tháng 1 2016

a=1b=4 nha tickticktick

6 tháng 1 2019

Ta có:

số được viết bằng 2004 số 1 có tổng các chữ số là: 2004

 chia hết cho 3 nhưng ko chia hết cho 9

nên không là số chính phương

Không phải là số chính phương nhé !

16 tháng 10 2017

Gọi n;n+1;n+2;n+3;n+4 là 5 số tự nhiên liên tiếp

\(.\)Nếu n \(⋮\)5 \(\Rightarrow\)đpcm

\(.\)Nếu n không chia hết cho 5 => n = 5k + 1 hoặc n = 5k +  2 hoặc n = 5k + 3 hoặc n = 5k + 4

- Với n = 5k + 1   => n + 4 = 5k + 5 \(⋮\)5

- Với n = 5k + 2 => n + 3 = 5k + 5 \(⋮\)5

- Với n = 5k + 3 => n + 2 = 5k + 5  \(⋮\)5

- Với n = 5k + 4 => n + 1 = 5k + 5 \(⋮\)5

Vậy trong 5 số tự nhiên liên tiếp có một số luôn chia hết cho 5

16 tháng 10 2017

Gọi 5 số tự nhiên liên tiếp là a, a + 1, a+2, a+3,a+4

Ta có:

a+a+1+a+2+a+3+a+4

= ( a+a+a+a+a) + ( 1 + 2 + 3 + 4 )

= 5.a+10

= 5. ( a + 2 ) chia hết cho 5

Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5

15 tháng 11 2018

Gọi (2n+5,6n+11)=d(d\(\inℕ^∗\))

\(\Rightarrow\)2n+5\(⋮\)d

         6n+11\(⋮\)d

\(\Rightarrow\)12n+30\(⋮\)d

          12n+22\(⋮\)d

\(\Rightarrow\)(12n+30-12n-22)\(⋮\)d

\(\Rightarrow\)8\(⋮\)d

\(\Rightarrow\)d\(\in\)Ư(8)={1,2,4,8}

Mà ta thấy 2n+5 và 6n+11 là hai số lẻ nên ƯCLN(2n+5,6n+11)=lẻ

\(\Rightarrow\)d=lẻ=1

Vậy 2n+5 và 6n+11 nguyên tố cùng nhau (đfcm)

15 tháng 11 2018

Gọi (2n + 5 , 6n + 11) = d   (d thuộc N*)

=>   2n + 5 \(⋮\)d

       6n + 11 \(⋮\)d

=>  3(2n + 5) \(⋮\)d

       6n + 11  \(⋮\)d

=>   6n + 15  \(⋮\)d

       6n + 11   \(⋮\)d

=> (6n + 15) - (6n + 11)  \(⋮\)d

=> 6n + 15 - 6n - 11  \(⋮\)d

=> 15 - 11    \(⋮\)d    

=> 4        \(⋮\)d               

=> d​  \(\in\) Ư(4)

Mà ta thấy 2n + 5 và 6n + 11 là số lẻ

Vậy d  \(\in\) Ư(4) là số lẻ 

Mà Ư(4) là số lẻ là {1}  => d = 1

Vậy (2n + 5 , 6n + 11) = 1   hay 2n + 5 và 6n + 11 là 2 số nguyên tố cùng nhau