K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

\(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)
\(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\) nên \(AB\perp AC\). (1)
\(AB=\sqrt{2^2+2^2}=2\sqrt{2}\).
\(AC=\sqrt{2^2+\left(-2\right)^2}=2\sqrt{2}\)
Vì vậy AB = AC. (2)
Từ (1) và (2) suy ra tam giác ABC vuông cân tại A.

AH
Akai Haruma
Giáo viên
22 tháng 2 2021

Lời giải:

Ta có: $S_{ABC}=\frac{h_a.a}{2}$

$S_{ABC}=\sqrt{p(p-a)(p-b)(p-c)}$ theo công thức Heron.

$\Rightarrow \frac{h_a.a}{2}=\sqrt{p(p-a)(p-b)(p-c)}$

$\Leftrightarrow \frac{a\sqrt{p(p-a)}}{2}=\sqrt{p(p-a)(p-b)(p-c)}$

$\Leftrightarrow \frac{a}{2}=\sqrt{(p-b)(p-c)}$

$\Rightarrow \frac{a}{2}=\frac{1}{2}\sqrt{(a+c-b)(a+b-c)}$

$\Rightarrow a^2=(a+c-b)(a+b-c)$$\Leftrightarrow a^2=a^2-(b-c)^2\Rightarrow (b-c)^2=0$

$\Rightarrow b=c$ hay $ABC$ là tam giác cân.

NV
12 tháng 3 2021

\(a^2=b^2+c^2-bc\Rightarrow bc=b^2+c^2-a^2\)

\(\Rightarrow cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{bc}{2bc}=\dfrac{1}{2}\Rightarrow A=60^0\)

Tương tự: \(ac=a^2+c^2-b^2\Rightarrow cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{1}{2}\Rightarrow B=60^0\)

\(\Rightarrow C=180^0-\left(A+B\right)=60^0\)

\(\Rightarrow A=B=C=60^0\Rightarrow\Delta ABC\) đều

10 tháng 9 2016

bài 1:

\(16\frac{2}{7}:\left(-\frac{2}{5}\right)-28\frac{2}{7}:\left(-\frac{2}{5}\right)\\ =\left(16\frac{2}{7}-28\frac{2}{7}\right):\left(-\frac{2}{5}\right)\\ =\left(-12\right):\left(-\frac{2}{5}\right)\\ =12:\frac{2}{5}\\ =\frac{6.5}{1}\\ =30\)

Bài 2:

Gọi độ dài 3 cạnh của tam giác là x; y; z; ta có:

Chu vi của tam giác là 36

=> x + y + z = 36

Ba cạnh của tam giác tỉ lệ với 3; 4; 5

=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{36}{12}=3\)

x/3 = 3 => x = 3.3 = 9 cm

y/4 = 3 => y = 3.4 = 12 cm 

z/5 = 3 => z = 3.5 = 15 cm

Vậy độ dài 3 cạnh của tam giác lần lượt là 9; 12; 12 (cm)

 

10 tháng 9 2016

Bài 1:

\(16\frac{2}{7}:\left(-\frac{2}{5}\right)-23\frac{2}{7}:\left(-\frac{2}{5}\right)=-7:\left(-\frac{2}{5}\right)=\frac{35}{2}\)

Bài 2:

Gọi độ dài các cạnh của tam giác là a,b,c

theo đề bài ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a+b+c=36

Apd đụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\)

=>\(\begin{cases}a=9\\b=12\\c=15\end{cases}\)

Vậy độ dài các cạnh của tam giác là 9;12;15

26 tháng 4 2017

A B C A' B' C' a)Do A',B',C' là trung điểm BC,CA,AB=> A'B' song song với AB,B'C'song song với BC,C'A' song song với CA

\(\overrightarrow{A'B'}=\left(6;3\right)\) => VTPT của đường thẳng AB là: \(\overrightarrow{n}=\left(1;-2\right)\)

và C' thuộc (AB)=>Phương trình đường thẳng AB là:

(AB): x-2y-6=0

Tương tự ta có phương trình đường thẳng BC là:

(BC): x+4=0

Tọa độ điểm B là nghiệm hệ

\(\left\{{}\begin{matrix}\text{x-2y-6=0}\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-5\end{matrix}\right.\)

=>B(-4;-5)

A'(-4;1) là TĐ của BC => tọa độ C(-4;7)

C'(2;-2) là TĐ của AB =>tọa độ A(8;1)

b) Gọi tọa độ trọng tâm G của tam giác A'B'C' là G(x;y)

=>\(\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}=0\)

=>\(\left\{{}\begin{matrix}\left(-4-x\right)+\left(2-x\right)+\left(2-x\right)=0\\\left(1-y\right)+\left(4-y\right)+\left(-2-y\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

=>G(0;1)

Thay vào tính

Ta có:\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\) =(8-4-4;1-1+7-1-5-1)=(0;0)

=>G là trọng tâm tam giác ABC=>ĐPCM

NV
3 tháng 5 2021

a.

\(P=cos120^0+cos120^0+cos120^0=-\dfrac{3}{2}\)

b.

\(A=\dfrac{\dfrac{sinx}{cosx}-\dfrac{cosx}{cosx}}{\dfrac{sinx}{cosx}+\dfrac{cosx}{cosx}}=\dfrac{tanx-1}{tanx+1}=\dfrac{2-1}{2+1}=\dfrac{1}{3}\)

c.

\(A=\dfrac{cos\left(720+30\right)+sin\left(360+60\right)}{sin\left(-360+30\right)-cos\left(-360-30\right)}=\dfrac{cos30+sin60}{sin30-cos30}=-3-\sqrt{3}\)

12 tháng 5 2017

Dựng hình hình hành CADB.
A B C D
Theo quy tắc hình bình hành: \(\overrightarrow{CA}+\overrightarrow{CB}=\overrightarrow{CD}\).
Vì vậy \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CD}\right|=CD\);
Mặt khác \(\left|\overrightarrow{CA}-\overrightarrow{CB}\right|=\left|\overrightarrow{CA}+\overrightarrow{BC}\right|=\left|\overrightarrow{BA}\right|=BA\).
Suy ra: \(CD=AB\).
Hình bình hành CADB có hai đường chéo bằng nhau (\(CD=AB\) )nên hình bình hành CADB là hình chữ nhật.