Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nhớ rằng \(\cos ^2a+\sin ^2a=1\). Ta có:
\(B=(1-\sin ^4a-\cos ^4a)(\tan ^2a+\cot ^2a+2)\)
\(=[1+2\sin ^2a\cos ^2a-(\sin^4a+\cos ^4a+2\sin ^2a\cos ^2a)](\frac{\sin ^2a}{\cos ^2a}+\frac{\cos ^2a}{\sin ^2a}+2)\)
\(=[1+2\sin ^2a\cos ^2a-(\sin ^2a+\cos ^2a)^2].\frac{\sin ^4a+\cos ^4a+2\sin ^2a\cos ^2a}{\cos ^2a\sin ^2a}\)
\(=[1+2\sin ^2a\cos ^2a-1^2].\frac{(\sin ^2a+\cos ^2a)^2}{\cos ^2a\sin ^a}\)
\(=2\sin ^2a\cos ^2a.\frac{1^2}{\cos ^2a\sin ^2a}=2\)
\(\cos^2\alpha.\cos^2\beta+\cos^2\alpha.\sin^2\beta+\sin^2\alpha\)
\(=\cos^2\alpha.\left(\cos^2\beta+\sin^2\beta\right)+\sin^2\alpha\)
\(=\cos^2\alpha.1+\sin^2\alpha\)
\(=\cos^2\alpha+\sin^2\alpha\)
\(=1\)
Điều kiện: a>45 độ