K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2018

10. a) Ta có : (a + b)2 + (a – b)2 = 2(a2 + b2). Do (a – b)\(^2\) ≥ 0, nên (a + b)\(^2\) ≤ 2(a2 + b2).

b) Xét : (a + b + c)\(^2\) + (a – b)\(^2\) + (a – c)\(^2\) + (b – c)\(^2\)

. Khai triển và rút gọn, ta được : 3(a\(^2\) + b\(^2\) + c\(^2\)).

Vậy : (a + b + c)\(^2\) ≤  3( a\(^2\) + b\(^2\) + c\(^2\)).

7 tháng 12 2018

Cách khác : Biến đổi tương đương

a, \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)luôn đúng

b, \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\le3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)

6 tháng 7 2023

a/

\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)=\)

\(=ab-ac-ab-bc+ac-bc=-2bc\)

b/

\(a\left(1-b\right)+a\left(a^2-1\right)=\)

\(=a-ab+a^3-a=a^3-ab=a\left(a^2-b\right)\)

c/

\(a\left(b-x\right)+x\left(a+b\right)=ab-ax+ax+bx=\)

\(=ab+bx=b\left(a+x\right)\)

7 tháng 2 2019

Vì: a1,a2,....,a5 chỉ nhận các giá trị 1 hoặc -1

nên: a1a2,a2a3,....,a5a1 chỉ nhận các giá trị như zệ

S=0. khi đó số số hạng -1 bằng 1

mà tổng trên có 5 số hạng ko chia hết cho 2 (vô lí)

Vậy............................. =))