Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)
\(2\left(A^2+B^2\right)\ge\left(A+B\right)^2\ge2\left(AB+BA\right)\\ \Leftrightarrow2A^2+2B^2\ge A^2+2AB+B^2\ge2AB+2BA\)
\(2A^2+2B^2\ge A^2+2AB+B^2\\ \Leftrightarrow A^2+B^2\ge2AB\\ \Leftrightarrow A^2+B^2-2AB\ge0\)
\(\Leftrightarrow\left(A-B\right)^2\ge0\) (LUÔN ĐÚNG) (1)
\(A^2+2AB+B^2\ge2AB+2BA\\ \Leftrightarrow A^2+B^2\ge2BA\\ \Leftrightarrow A^2+B^2-2BA\ge0\)
\(\Leftrightarrow\left(A-B\right)^2\ge0\) (LUÔN ĐÚNG) (2) Từ (1), (2) ta có: \(2A^2+2B^2\ge A^2+2AB+B^2\ge2AB+2BA\\ \Leftrightarrow2\left(A^2+B^2\right)\ge\left(A+B\right)^2\ge2\left(AB+BA\right)\left(đpcm\right)\)1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
a) Áp dụng Cauchy-Schwarz:
\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\left(a^2+b^2\right)\)
b) Áp dụng AM-GM:
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\a^2+c^2\ge2ac\end{matrix}\right.\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2ac\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(a^2+b^2+c^2\ge ab+bc+ac\) (cm ở trên r nên khỏi cm lại đi)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2\)
Kết hợp 2 điều trên:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
a)2(a2+b2) ≥ (a+b)2
⇔ 2a2+2b2 ≥ a2+2ab+b2
xét hiệu
⇔ 2a2+2b2-a2-2ab-b2 ≥ 0
⇔ a2-2ab+b2 ≥ 0
⇔ (a-b)2 ≥ 0 (luôn đúng )
=> đpcm
1 ) (a+b+c)^2 >= 3(ab+bc+ac)
<=> a^2 + b^2 + c^2 >= ab + bc + ac
<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ac
<=> a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + a^2 - 2ac + c^2 >= 0
<=> (a - b)^2 + (b-c)^2 + (a-c)^2 >= 0
( luôn đúng với mọi a ; b ; c )
( đpcm )
2 ) P = \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}\)
AD BĐT Cô - si và BĐT phụ đã cmt ở trên ta có : \(P\ge2.\frac{1}{3}+\frac{8.3.\left(ab+bc+ac\right)}{9\left(ab+bc+ac\right)}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Dấu " = " xảy ra <=> a = b = c
Khôi Bùi : theo e ý 2 có thể đơn giản hóa vấn đề bằng cách đặt ẩn phụ
đặt \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}=t\left(t\ge3\right)\)
\(\Rightarrow P=t+\frac{1}{t}=\frac{t}{9}+\frac{1}{t}+\frac{8}{9}t\)
Áp dụng BĐT AM-GM ta có:
\(P\ge2.\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8}{9}t\ge\frac{2.1}{3}+\frac{8}{9}.3=\frac{10}{3}\)
Dấu " = " xảy ra <=> a=b
Dấu => thứ hai từ dưới lên bạn bị nhầm rồi.
Thứ nhất, nên dùng dấu <=> thay vì dấu =>
Thứ hai, sau dấu => phải là $(a-b)^2+(b-c)^2+(c-a)^2\geq 0$ mới đúng nhé bạn
a) Sửa đề: \(\left(ax+by+cx\right)^2+\left(bx-ay\right)^2+\left(cy-bz\right)^2+\left(az-cx\right)^2\)
= a2x2 + b2y2 + c2x2 + 2axby + 2bycz + 2axcz + b2x2 - 2bxay + a2y2 + c2y2 - 2cybz + b2z2 + a2z2 - 2azcx + c2x2
= a2x2 + b2y2 + c2x2 + b2x2 + a2y2 + c2y2 + b2z2 + a2z2 + c2x2
= a2(x2+y2+z2) + b2(x2+y2+z2) + c2(x2+y2+z2)
= (a2+b2+c2)(x2+y2+z2) (đpcm)
b) Đặt x = b; y = c; z = a, ta có:
\(\left(ay+bz+cx\right)^2+\left(az-by\right)^2+\left(bx-cz\right)^2+\left(cy-ax\right)^2\)
= a2y2 + b2z2 + c2x2 + 2aybz + 2bzcx + 2aycx + a2z2 - 2azby + b2y2 + b2x2 - 2bxcz + c2z2 + c2y2 - 2cyax + a2x2
= a2y2 + b2z2 + c2x2 + a2z2 + b2y2 + b2x2 + c2z2 + c2y2 + a2x2
= (a2+b2+c2)(x2+y2+z2)
Thay b = x, c = y, a = z, ta có:
(a2+b2+c2)(x2+y2+z2) = (a2+b2+c2)2 (đpcm)
* Chứng minh :
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) (*)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( luôn đúng )
Do đó : \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) \(\left(1\right)\)
* Chứng minh :
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\)\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) đến đây chứng minh giống chỗ (*)
...
Do đó : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) \(\left(2\right)\)
Từ (1) và (2) suy ra : \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ( đpcm )