Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1.2+2.3+3.4+.......+\left(n-1\right).n\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+......+\left(n-1\right).n.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+.....+\left(n-1\right).n.\left[\left(n+1\right)-\left(n-2\right)\right]\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+\left(n-1\right).n\left(n+1\right)-\left(n-1\right).n\left(n-2\right)\)
\(=\left(n-1\right).n.\left(n+1\right)\)
\(\Rightarrow A=\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)( đpcm )
D = 1.2 + 2.3+ 3.4 +...+ 99.100
=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=99.100.101-0.1.2
=99.100.101
=999900
=>D=999900:3=333300
Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)
=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)
=n.(n+1).(n+2)-0.1.2
=n.(n+1)(n+2)
=>Dn=n.(n+1)(n+2):3
=>điều cần chứng minh
1/A = 1 + 2 + 3 + 4 +.......+ n
Hay A = n + ... + 4 + 3 + 2 + 1 (Viết ngược lại )
=> A + A = (1 + n) + ... + (n + 1) Có n cặp
=> 2.A = (1 + n).n
=> A = (1 + n).n/2 => Đpcm
2/ B=1.2+2.3+3.4.....+(n-1).n
ta có
3.B=1.2.(3-0)+2.3.(4-1)+3.4.(5 -2)...+ (n-1).n . ((n+1) - (n-2))
3.B=1.2.3+2.3.4+3.4.5+...+ (n-1) . n. (n+1) - 0.1.2 -1.2.3 -2.3.4 -3.4.5 -...(n-1)(n+1) n
3A=n.(n-1).(n+1)
A=1/3.n.(n-1).(n+1)
\(A=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+n\left(n+1\right).3\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right).\)\(\left(n+2-n+1\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n\left(n+1\right)\left(n+2\right)\)\(-\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow3A=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Vì A là số tự nhiên nên A chia hết cho 3 (đpcm)
Câu a: Không hỏi nên không trả lời
Câu b:Gọi d là ƯCLN của n và n+1
Ta có: n chia hết cho d
n+1 chia hết cho d
=>(n+1)-n chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy phân số n/n+1 là phân số tối giản
Câu c: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=\(1-\frac{1}{50}\)
Vì: \(1-\frac{1}{50}\)<\(1\)
Vậy:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)<\(1\)
Ta có: \(\frac{1}{1.2}=\frac{3}{1.2.3}\) ;\(\frac{1}{1.2+2.3}=\frac{3}{2.3.4}\); \(\frac{1}{2.3+3.4}=\frac{3}{3.4.5}\); ......;\(\frac{1}{1.2+2.3+3.4+...+n\left(n+1\right)}=\frac{3}{n\left(n+1\right)\left(n+2\right)}\)
=> \(S=\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
Ta lại có: \(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\); \(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\); \(\frac{2}{3.4.5}=\frac{1}{3.4}-\frac{1}{4.5}\);....;\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)=> \(S=\frac{3}{4}-\frac{3}{2\left(n+1\right)\left(n+2\right)}< \frac{3}{4}\)
=> \(S< \frac{3}{4}\)
Ta có : k(k+1)(k+2)-(k-1)(k+1)k
=k(k+1).[(k+2)-(k-1)]
=3k(k+1)
áp dụng 3(1+2)=1.2.3-0.1.2
=>3(2.3)=2.3.4-1.2.3
=>3(3.4)=3.4.5-2.3.4
.....................................
3n(n+1)=n(n+1)(n+2)-(n-1)n(n+1)
Cộng lại ta có 3.S=n(n+1)(n+2)=>S=n(n+1)(n+2)/3
CHÚC BẠN HỌC TỐT NHA !!!
k(k+1)(k+2)-(k-1)k(k+1)=k(k+1)(k+2-k+1)=3.k.(k+1)
S=1.2+2.3+3.4+...+n(n+1)
=>3S=1.2.3+2.3.3+3.4.3+...+n(n+1)3
=1.2.3+2.3.(4-1)+3.4(5-2)+...+n.(n+1)[(n+2)-(n-1)]
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)
=n(n+1)(n+2)
\(\Rightarrow S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
m tưởng tao thik đăng à..............................................