Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
Gọi d là ƯCLN(7n+10, 5n+7)
Ta có: 7n+10 chia hết cho d, 5n+7 chia hết cho d
<=>[5(7n+10)-7(5n+7)] chia hết cho d
<=>35n+50-35n+49
<=>1 chia hết cho d
<=> d = 1
các bài còn lại thì giải tương tự
Bài 1:Tính cả ước âm thì là số `12`
Bài 2:
Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`
`=>7n+10 vdots d,5n+7 vdots d`
`=>35n+50 vdots d,35n+49 vdots d`
`=>1 vdots d`
`=>d=1`
`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.
Các phần còn lại thì bạn làm tương tự câu a.
a) Gọi 2 số lẻ liên tiếp là 2n+ 1; 2n+ 3.
Gọi( 2n+ 1; 2n+ 3)= d.
=> 2n+ 1\(⋮\) d; 2n+ 3\(⋮\) d.
=>( 2n+ 3)-( 2n+ 1)\(⋮\) d.
=> 2n+ 3- 2n- 1\(⋮\) d.
=> 2\(⋮\) d.
=> d\(\in\){ 1; 2}.
Mà 2n+ 1 không\(⋮\) 2.
=> d= 1.
=>( 2n+ 1; 2n+ 3)= 1.
Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau.
b) Gọi( 2n+ 5; 3n+ 7)= d.
=> 2n+ 5\(⋮\) d; 3n+ 7\(⋮\) d.
Ta có: 2n+ 5\(⋮\) d.
=> 3( 2n+ 5)\(⋮\) d.
=> 6n+ 15\(⋮\) d( 1).
3n+ 7\(⋮\) d.
=> 2( 3n+ 7)\(⋮\) d.
6n+ 14\(⋮\) d( 2).
Từ( 1) và( 2), ta có:
( 6n+ 15)-( 6n+ 14)\(⋮\) d.
=> 6n+ 15- 6n- 14\(⋮\) d.
=> 1\(⋮\) d.
=> d= 1.
=>( 2n+ 5; 3n+ 7)= 1.
Vậy 2n+ 5 và 3n+ 7 nguyên tố cùng nhau.
a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
bạn vào câu hỏi tương tự nha
Gọi ƯCLN của 2n+3 và 4n+8 là d (d thuộc N*)
Ta có 2n+ 3 chia hết cho d
4n + 6 chia hết cho d
4n + 8 chia hết cho d
Vậy ( 4n+8 ) - (4n+6) chai hết cho d
2 chia hết cho d
Ư(2) ={ 1;2} mà d lẻ => d= 1
Vậy 2n+ 3 và 4n+8 là 2 số nguyên tố cùng nhau
các ý khác cũng tương tự