Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nếu n là số chẵn thì n.(n + 2017) chia hết cho 2 => n.(n + 2017) là số chẵn.
- Nếu n là số lẻ thì n + 2017 là số chẵn => n.(n + 2017) chia hết cho 2 => n.(n + 2017) là số chẵn.
Vậy n.(n + 2017) là số chẵn với mọi số tự nhiên n.
Xét 2 trường hợp:
Nếu n lẻ thì n + 2017 sẽ là một số chẵn
Mà lẻ nhân chẵn sẽ cho 1 số chẵn nên n.(n+2017) chẵn
Nếu n chẵn thì n + 2017 sẽ là một số lẻ
Mà chẵn nhân lẻ sẽ cho 2 số chẵn nên n.(n + 2017 ) chẵn
Vậy với mọi số tự nhiên n thì n.(n+2017) chẵn
Nhớ k cho mình nhé! Thank you!!!
Gọi 4 số tự nhiên liên tiếp là n, n + 1, n + 2, n + 3 (n ∈ Z).
Ta có n(n + 1)(n + 2)(n + 3) + 1 = n(n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)(n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N.
Vậy n(n + 1)(n + 2)(n + 3) là số chính phương
Gọi 4 số tự nhiên liên tiếp là \(n;n+1;n+2;n+3\left(n\in N\right)\)
Theo đề bài, ta có :
\(n\cdot\left(n+1\right)\cdot\left(n+2\right)\cdot\left(n+3\right)+1\)
\(=\left[n\cdot\left(n+3\right)\right]\cdot\left[\left(n+1\right)\cdot\left(n+2\right)\right]\)
\(=\left[n^2+3n\right]\cdot\left[n^2+3n+2\right]+1\)( * )
Đặt \(n^2+3n=t\)thì ( * ) \(=t\cdot\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)
Vậy tích của 4 số tự nhiên liên tiếp cộng cho 1 là số chính phương
Gọi d = ƯCLN ( 5n+6 ; n+1 )
=> \(5n+6⋮d;n+1⋮d\)
=> \(5n+6⋮d;5.\left(n+1\right)⋮d\)
=> \(5n+6⋮d;5n+5⋮d\)
=> \(\left(5n+6\right)-\left(5n+5\right)⋮d\)
=> \(5n+6-5n-5⋮d\)
=> \(1⋮d\)
=> \(d=1\)
=> ƯCLN ( 5n+6 ; n+1 ) = 1
=> 5n+6 và n+1 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n ( đpcm )
Vậy bài toán được chứng minh !
Cbht ❤️
Đặt ƯCLN(5n+6,n+1)=d
Ta có: \(n+1⋮d\Rightarrow5\left(n+1\right)⋮d\)\(\Rightarrow5n+5⋮d\)
mà: \(5n+6⋮d\)
\(\Rightarrow\left(5n+6\right)-\left(5n+5\right)⋮d\)
\(\Rightarrow1⋮d\)\(\Rightarrow d\in\)Ư(1)
Mà d lớn nhất=> d=1 =>ƯCLN(n+1,5n+6)=1
=>. n+1 và 5n+6 là 2 số nguyên tố cùng nhau\(\forall n\in Z\)
Chứng minh rằng có vô số số tự nhiên n để n + 15 và n + 72 là hai số nguyên tố cùng nhau
Gọi UCLN(m; mn + 8) là d
=> m chia hết cho d => mn chia hết cho d
và mn + 8 chia hết cho d
Do đó 8 chia hết cho d => d thuộc {1; 2; 4; 8}
Mà m lẻ và m chia hết cho d => d lẻ
Do đó d = 1
=> UCLN(m; mn + 8) = 1
hay 2 số này nguyên tố cùng nhau
Vậy...
1/2 < 2(1/3 - 1/5)
1/3 < 2(1/5 - 1/7)
Mà a cũng không thể nhỏ hơn 1 được !
=======================
Xét 1/2 + 1/3 + 1/4
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3)
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1)
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9)
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2)
Tiếp tục xài chiêu đó, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3)
(1),(2),(3) ---> a > 3 (*)
Mặt khác
1/2 + 1/3 + 1/6 = 1 (4)
1/4 + 1/5 + 1/20 = 1/2 (5)
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6)
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7)
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8)
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9)
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10)
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**)
Từ (*) và (**) ---> 3 < a < 4 ---> a ko phải là số tự nhiên.
====================================
Cách khác (tổng quát hơn, trừu tượng hơn)
Quy đồng mẫu số :
Chọn mẫu số chung là M = BCNN(2;3;4;...;50) = k.2^5 = 32k (k là số tự nhiên lẻ)
Đặt T2 = M/2; T3 = M/3; ...; T50 = M/50
---> a = (T2+T3+ ... + T50) / M
Chú ý rằng T2,T3,...,T50 đều chẵn, chỉ riêng T32 = M/32 = k là lẻ, còn M chẵn
---> T2+T3+...T50 lẻ.Số lẻ ko thể là bội của số chẵn ---> a ko phải là số tự nhiên.
Anh bạn trên nhầm rồi ! Sao lại viết :
1/2 < 2(1/3 - 1/5)
1/3 < 2(1/5 - 1/7)
Mà a cũng không thể nhỏ hơn 1 được !
=======================
Xét 1/2 + 1/3 + 1/4
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3)
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1)
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9)
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2)
Tiếp tục xài chiêu đó, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3)
(1),(2),(3) ---> a > 3 (*)
Mặt khác
1/2 + 1/3 + 1/6 = 1 (4)
1/4 + 1/5 + 1/20 = 1/2 (5)
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6)
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7)
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8)
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9)
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10)
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**)
Từ (*) và (**) ---> 3 < a < 4 ---> a ko phải là số tự nhiên.
====================================
Cách khác (tổng quát hơn, trừu tượng hơn)
Quy đồng mẫu số :
Chọn mẫu số chung là M = BCNN(2;3;4;...;50) = k.2^5 = 32k (k là số tự nhiên lẻ)
Đặt T2 = M/2; T3 = M/3; ...; T50 = M/50
---> a = (T2+T3+ ... + T50) / M
Chú ý rằng T2,T3,...,T50 đều chẵn, chỉ riêng T32 = M/32 = k là lẻ, còn M chẵn
---> T2+T3+...T50 lẻ.Số lẻ ko thể là bội của số chẵn ---> a ko phải là số tự nhiên
`= 0,3 . (2003^2000 . 2003^3 - 1997^1996 .1997)`
`=0,3 . (...1 xx ...7 - ...1 xx ...7)`
`= 0,3 . (...7 - ...7)`
`= 0,3 xx ...0`
`= 0`