K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2014

Gọi 5 số tự nhiên liên tiếp la n-2;n-1;n;n+1;n+2(n thuộc Z,n>= 2)

ta có (n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2=5(n^2 + 2)

vì n^2 k thể tận cùng bởi 3 hoặc 8 do đó n^2 +2 k thê chia hết cho 5

suy ra 5(n^2 + 2) k la so chinh phuong

8 tháng 8 2016

Gọi 2 số lẻ liên tiếp là 2k−1 và 2k+1, với k là số tự nhiên.

Tổng các bình phương của hai số lẻ liên tiếp là: (2k−1)2+(2k+1)2=4k2−4k+1+4k2−4k+1=8k2+2

Tổng trên chia cho 4 dư 2; Vậy nó không thể là số chính phương (Số chính phương hoặc chia hết cho 4 hoặc chia cho 4 dư 1)

30 tháng 3 2017

Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m\(\in\)N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương .

2 tháng 12 2016

Gọi 5 số chính phương liên tiếp là: \(\left(n-2\right)^2;\left(n-1\right)^2;n^2;\left(n+1\right)^2;\left(n+2\right)^2\)

Ta có: \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2=5n^2+10\)

\(=5\left(n^2+2\right)\)

Để tổng này là số chính phương thì n2 + 2 phải chia hết cho 5 hay n2 + 2 có tận cùng là 0, hoặc 5, hay n2 phải có tận cùng là 3, hoặc 8.

Mà n2 là số chính phương nên không bao giờ có số tận cùng là 3 hoặc 8.

Vậy tổng của 5 số chính phương liên tiếp khác 0 không thể là 1 số chính phương

12 tháng 10 2017

Gọi 3 số nguyên liên tiếp là: a-1, a, a+1 
Giả sử b3= (a - 1)2+a2+(a + 1)2 
= 3a2+2 => chia 3 dư 2 
=> b chia 3 dư 2 => b=3k+2 
=> (3k + 2)3 = 3a+ 2 
=>27k^3+54k^2+36k+8=3a^2+2 
=>a2 = 9k(k+1)2+(3k+2) 
NX: ta có vế trái là một số chia 3 dư 2 
Mà vế phải là một số chính phương, nên chia 3 chỉ có 2 khả năng dư 1 hoăc dư 0=> vô lý 
vậy ta có điều cần phải C/m.

15 tháng 8 2016

Ta biết một số chính phương hoặc chia hết cho 3 hoặc chia 3 dư 1 
(3k)² = 9k² chia hết cho 3 
(3k+1)² = 9k² + 6k + 1 chia 3 dư 1 
(3k+2)² = 9k² + 12k + 3 + 1 chia 3 dư 1 
----------- 
A = a^2k + (a+1)^2m + (a+2)^2n = (a²)^k + ((a+1)²)^m + ((a+2)²)^n 

a, a+1, a+2 là 3 số nguyên liên tiếp nên có đúng 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2 

=> a², (a+1)², (a+2)² có một số chia hết cho 3, 2 số chia 3 dư 1 

=> (a²)^k, ((a+1)²)^m và ((a+2)²)^n có 1 số chia hết cho 3, 2 số chia 3 dư 1 

=> A = (a²)^k + ((a+1)²)^m + ((a+2)²)^n chia 3 dư 2 không thể là số chính phương b² 
(vì b² chia 3 dư 0 hoặc 1) 

24 tháng 8 2019

https://olm.vn/hoi-dap/detail/57202292544.html

Link ạ!

Tham khảo nhé