K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn đáp án đúng nhất trong các câu sau:

Câu 1: Thực hiện phép tính  được kết quả là:

A.  

B.

C.

D.

Câu 2: Kết quả của phép tính nhân  là:

A.  

B.

C.

D.

Câu 3: Tính  ta được:

A.

B.

C.

D.

Câu 4: Tính  ta được:

A.

B.

C.

D.

Câu 5: Điền số thích hợp trong phép tính  là:

A. -27 B. 27

C. 9 D. -9

Câu 6: Kết quả của phép chia 15x3y4 : 5x2y2 là

A. 3xy2       B. -3x2y     

C. 5xy         D. 15xy2

Câu 7: Cho phân thức 

a) Tìm điều kiện của x để phân thức xác định

A. x = 2          

B. x ≠ 2          

C. x > 2

D. x < 2

Câu 8: Phân thức    là kết quả của phép tính nào dưới đây?

  

Câu 9: Kết quả của phép nhân  là

Câu 10: Chọn khẳng định đúng. Muốn chia phân thức 

 

Câu 11:  Hãy chọn câu sai.

A. Tứ giác có 4 cạnh bằng nhau là hình thoi

B. Tứ giác có hai đường chéo vuông góc với nhau và bằng nhau là hình thoi

C. Hình bình hành có đường chéo là phân giác của một góc là hình thoi

D. Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi

Câu 12: Cho tam giác ABC cân tại A. Trên các cạnh bên AB, AC lấy các điểm M, N sao cho BM= CN. Tứ giác BMNC là hình gì?

A. Hình thang            

B. Hình thang cân      

C. Hình thang vuông  

D. Hình bình hành

Câu 13: Chọn đáp án đúng nhất trong các đáp án sau?

   A. Hình chữ nhật là tứ giác có bốn cạnh bằng nhau.

   B. Hình chữ nhật là tứ giác có bốn góc vuông.

   C. Hình chữ nhật là tứ giác có hai góc vuông.

   D. Các phương án trên đều không đúng.

Cau 14: Hãy chọn câu sai.

A. Hình bình hành có hai đường chéo cắt nhau tại trung điểm mỗi đường

B. Hình bình hành có hai góc đối bằng nhau

C. Hình bình hành có hai đường chéo vuông góc với nhau

D. Hai bình hành có hai cặp cạnh đối song song

 

Câu 15: Hình vuông là tứ giác có

A. Có bốn cạnh bằng nhau                

B. Có bốn góc bằng nhau

C. Có 4 góc vuong và bốn cạnh bằng nhau

Câu 16:  Hãy chọn câu sai:

A. Điểm đối xứng với điểm M qua M cũng chính là điểm M

B. Hai điểm A và B gọi là đói xứng với nhau qua điểm O kkhi O là trung điểm của đoạn thẳng AB

C. Hình bình hành có một tâm đối xứng

D. Đoạn thẳng có hai tâm đối xứng

Câu 17: Hãy điền đúng, sai:

A. Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông

B. Diện tích hình chữ nhật bằng nửa tích hai kích thước của nó

C. Diện tích hình vuông có cạnh a là 2a

D. Diện tích tam giác bằng nửa tích đáy với đường cao

Câu 18: Cho hình chữ nhật ABCD có AC là đường chéo. Chọn câu đúng.

A. SABCD = AB

B. SABCD = DA. DC

C. SABC = AB.BC

D. SADC = AD. DC

Câu 19: Kết quả của phép tính -4x2(6x3 + 5x2 – 3x + 1) bằng

A. 24x5 + 20x4 + 12x3 – 4x2     

B. -24x5 – 20x4 + 12x3 + 1

C. -24x5 – 20x4 + 12x3 – 4x2     

D. -24x5 – 20x4 – 12x3 + 4x2

Câu 20: Chọn câu đúng.

A. (A + B)2 = A2 + 2AB + B2   

B. (A + B)2 = A2 + AB + B2

C. (A + B)2 = A2 + B2              

D. (A + B)2 = A2 – 2AB + B2

Câu 21: Khai triển  theo hằng đẳng thức ta được

Câu 22: Thương của phép chia (-xy)6 : (2xy)4 bằng:

A. (-xy)2      B. (xy)2      

C. (2xy)2     D. (4xy)2    

Câu 23. Thương của phép chia (-12x4y + 4x3 – 8x2y2) : (-4x)2 bằng

A. -3x2y + x – 2y2                     B. 3x4y + x3 – 2x2y2

C. -12x2y + 4x – 2y2                 D. 3x2y – x + 2y2

Câu 24. Thương  bằng

A. .

B. .

C. .

D. .

Câu 25. Phân thứcxác định khi

 A. x = -3

 B. x ≠ 3

 C. x ≠ 0

 D. x ≠ -3

Câu 26. Kết quả thu gọn nhất của tổng  là?

Câu 27. Chọn câu đúng?

 

Câu 28. Kết quả gọn nhất của tích  là

Câu 29.  Chọn câu đúng.

A. Đường trung bình của hình thang là đường nối trung điểm hai cạnh đáy hình thang.

B. Đường trung bình của tam giác là đoạn nối trung điểm hai cạnh của tam giác.

C. Trong một tam giác chỉ có một đường trung bình.

D. Đường trung bình của tam giác là đường nối từ một đỉnh đến trung điểm cạnh đối diện.

Câu 30: Tính x, y trên hình vẽ, trong đó AB // EF // GH // CD. Hãy chọn câu đúng.

A. x = 15; y = 17

B. x = 11; y = 17

C. x = 12; y = 16

D. x = 17; y = 11

Câu 31: Cho tam giác ABC, đường cao AH = 9 cm, cạnh BC = 12 cm. Diện tích tam giác là:

A. 108 cm2

B. 72 cm2

C. 54 cm2

D. 216 cm2

B. 102 C. 122 D. 202

Câu 32: Cho tam giác ABC vuông tại A, vẽ hình chữ nhât ABDC. Biết diện tích của tam giác vuông là 140 cm2. Diện tích hình chữ nhật ABDC là:

A. 70 cm2 B. 280 cm2 C. 300 cm2 D. 80 cm2

Câu 33: Phân tích đa thức sau thành nhân tử:

Câu 34:

a/ Thực hiện phép tính:

 

Câu 35:

Cho tam giác ABC vuông tại A. Điểm D trên cạnh BC, vẽ DM vuông góc với AB tại M, DN vuông góc với AC tại N.

a) Tứ giác AMDN là hình gì? Vì sao?

b/ Tính diện tích tứ giác AMDN biết AM = 3cm, AD = 5cm.

Câu 36:

Cho tam giác ABC vuông tại A (AB < AC) . M là trung điểm cạnh BC. Vẽ MD vuông góc với AB tại D và ME vuông góc với AC tại E.

a) Chứng minh tứ giác ADME là hình chữ nhật.

b) Chứng minh E là trung điểm của đoạn thẳng AC và tứ giác CMDE là hình bình hành.

c) Vẽ đường cao AH của tam giác ABC. Chứng minh tứ giác MHDE là hình thang cân

2
1 tháng 1 2022

dài quá lỗi ảnh hết rùi trèn

1 tháng 1 2022

c35:

a,tứ giác AMDN là hình chữ nhật vì 

góc DMA=MAN=DNA=90\(^o\)

b,

áp dụng đl pytago vào tam giác vuông DMA có:

\(MD^2=DA^2-AM^2\\ MD=\sqrt{5^2-3^2}=4cm\)

\(S_{DMA}=\dfrac{MD.AM}{2}=\dfrac{4.3}{2}=6cm^2\)

vì AMDN là hình chữ nhật nên:

AM=DN=3cm

\(S_{AND}=\dfrac{DN.AN}{2}=6cm^2\)

\(S_{AMDN}=S_{AMD}+S_{AND}=6+6=12cm^2\)

C36:

a, xét tứ giác ADME có:

góc MDA=DAE=MEA=90\(^o\)

nên ADME là hình chữ nhật

b, xét tam giác ABC có:

 \(ME\perp AC\\ AB\perp AC\\ \Rightarrow ME//AB\)

mà M là trung điểm BC nên :

E là trung điểm AC

\(MD\perp AB\\ AC\perp AB\\ \Rightarrow MD//AC\)

mà M là trung điểm BC nên:

D là trung điểm AB

xét tam giác ABC có đường t/b DE nên:

DH//EC và DH=EC

=>CMDE là hình bình hành

c,ta có:

DE là đường t/b của ABC nên:

DE//HM

=>MHDE là hình thang(1)

ta có:

góc BDH+HDE+EDA=180\(^o\)

góc DEA+MED+MEC=180\(^o\)

(BDH+HDE+EDA=DEA+MED+MEC=180\(^o\))

mà BDH+EDA=MEC+DEA(gt)

=>HDE=MED(2)

từ (1)và (2) suy ra:

 tứ giác MHDE là hình thang cân

 

 

 

 

 

 

 

21 tháng 12 2021

Chọn C

Câu 54: Chọn khẳng định đúng.  A. Tứ giác có hai góc vuông là hình chữ nhật.           B. Hình bình hành có hai đường chéo bằng nhau.  C. Hình thoi có các góc bằng nhau.  D. Hình chữ nhật có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.Câu 55: Chọn khẳng định sai.  A. Chữ cái A có tâm đối xứng.  B. Chữ cái S có tâm đối xứng.  C. Đường tròn có tâm là tâm đối xứng.  D. Hình bình hành nhận giao...
Đọc tiếp

Câu 54: Chọn khẳng định đúng.

  A. Tứ giác có hai góc vuông là hình chữ nhật.         

  B. Hình bình hành có hai đường chéo bằng nhau.

  C. Hình thoi có các góc bằng nhau.

  D. Hình chữ nhật có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.

Câu 55: Chọn khẳng định sai.

  A. Chữ cái A có tâm đối xứng.

  B. Chữ cái S có tâm đối xứng.

  C. Đường tròn có tâm là tâm đối xứng.

  D. Hình bình hành nhận giao điểm hai đường chéo làm tâm đối xứng.

Câu 56: Hình thoi có độ dài một đường chéo bằng độ dài một cạnh thì có một góc có số đo bằng

  A. 300.                                                              B. 600.

  B. 450.                                                              C. 750

Câu 57: Hình thoi có cạnh bằng 5cm, một đường chéo có độ dài bằng 6cm thì đường chéo còn lại có độ dài bằng

  A. 7cm.                                                             B. 8cm.

  B. 9cm.                                                             C. 10cm.

Câu 58: Hình chữ nhật có độ dài đường chéo bằng 10cm, độ dài một cạnh bằng 6cm thì độ dài của cạnh kề là

  A. 8cm.                                                             B. 14 cm.

  B. 4cm.                                                             C. 60cm

1
22 tháng 11 2021

54D

55B

56B

57B

58A

26 tháng 12 2021

10D

11C

14 tháng 1 2022

Câu 5: Tứ giác có hai cạnh đôi song song và hai đường chéo bằng nhau là:

A. Hình thang vuông B. Hình chữ nhật C. Hình thang cân D. Hình bình hành

Câu 6: Hình bình hành có 1 góc vuông là:

A. Hình thang B. Hình chữ nhậtC. Hình thoi D. Hình thang cân

Câu 7: Hình chữ nhật có hai đường chéo vuông góc là:

A. Hình thoi B. Hình bình hành C. Hình vuông D. Hình thang cân

Câu 8: Hình chữ nhật có một đường chéo là phân giác của 1 góc là:

A. Hình thoi B. Hình bình hành C. Hình vuông D. Hình thang cân

Câu 9: Hình thoi có một góc vuông là:

A.Hình chữ nhật B. Hình bình hành C. Hình vuông D. Hình thang cân

Câu 10. Hình thang cân ABCD, AB // DC) có B= 50° thì số đo 3 bằng:

A. 500 B. 800 C. 1000 D . 1300

< Hình như câu 10 sai sai gì á bạn, xem lại đề giúp mình nhé! Chứ mình ko hỉu đề :(( >

mai kt toán,bh phải ôn cái này đây  -.-TỔNG HỢP KIẾN THỨC TOÁN LỚP 8Nhân Đơn Thức Với Đa ThứcMuốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.Nhân Đa Thức Với Đa ThứcMuốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích lại với...
Đọc tiếp

mai kt toán,bh phải ôn cái này đây  -.-

TỔNG HỢP KIẾN THỨC TOÁN LỚP 8

  1. Nhân Đơn Thức Với Đa Thức

Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.

  1. Nhân Đa Thức Với Đa Thức

Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích lại với nhau.

  1. Những Hằng Đẳng Thức Đáng Nhớ.
    • Bình phương của một tổng.

Bình phương của một tổng = bình phương số thứ nhất cộng với hai lần tích số thứ nhân nhân số thứ hai rồi cộng với bình phương số thứ hai.

(A + B)2 = A2 + 2AB + B2

  • Bình phương của một hiệu

Bình phường của một hiệu = bình phương số thứ nhất trừ đi hai lần tích số thứ nhất nhân số thứ 2 rồi cộng với bình phương số thứ hai.

(A – B)2 = A2 – 2AB + B2

  • Hiệu hai bình phương.

Hiệu hai bình phương bằng hiệu hai số đó nhân tổng hai số đó.

A2 – B2 = (A + B)(A – B)

  • Lập phương của một tổng.

Lập phương của một tổng = lập phương số thứ nhất + 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai + lập phương số thứ hai.

(A + B)3 = A3 + 3A2B + 3AB2 + B3

  • Lập phương của một hiệu.

Lập phương của một hiệu = lập phương số thứ nhất – 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai – lập phương số thứ hai.

(A – B)3 = A3 – 3A2B + 3AB2 – B3

  • Tổng hai lập phương.

Tổng của hai lập phương = tổng hai số đó nhân với bình phương thiếu của hiệu.

A3 + B3  = (A + B)(A2 – AB + B2)

  • Hiệu hai lập phương.

Hiệu của hai lập phương bằng : hiệu của hai số đó nhân với bình phương thiếu của tổng.

A3 – B3 = (A – B)(A2 + AB + B2)

  1. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.

Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.

  1. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức.
  2. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
  3. Phân tích đa thức thành nhân tử bằng phương pháp phối hợp nhiều phương pháp.
  4. Chia đơn thức cho đơn thức.

Muốn chia đơn thức A cho đơn thức B (trường hợp A chia hết cho B) ta làm như sau :

  • Chia hệ số của đơn thức A cho hệ số của đơn thức B.
  • Chia lũy thừa của từng biến trong A cho lũy thừa cùng biến đó trong B.
  • Nhân các kết quả vừa tìm được với nhau.
  1. Chia đa thức cho đơn thức.

Muốn chia đa thức A cho đơn thức B (trường hợp các hạng tử của đa thức A đều chia hết cho đơn thức B), ta chia mỗi hạng tử của A cho B rồi cộng các kết quả lại với nhau.

  • Chia đa thức một biến đã sắp xếp.
  • Phân thức đại số.

Một phân thức đại số (hay nói gọn là phân thức) là một biểu thức có dạng A/B. trong đó A,B là những đa thức và B khác 0.

A được gọi là tử thức (hay tử), B được gọi là mẫu thức (hay mẫu).

Mỗi đa thức cũng được coi như một phân thức với mẫu thức bằng 1.

Số 0, số 1 cũng là những phân thức đại số.

  • Hai phân thức bằng nhau.

Hai phâ thức A/B và C/D được gọi là bằng nhau nếu A.D = B.C

Ta viết : A/B = C/D nếu A.D = B.C

  • Tính chất cơ bản của phân thức.

Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác 0 thì được một phân thức bằng phân thức đã cho.

A/B = A.M/B.M (M là một đa thức khác 0)

Nếu chia cả tử và mẫu của một phân thức cho một nhân tử chung của chúng thì ta được một phân thức bằng phân thức đã cho.

A/B = A : N / B : N (N là một nhân tử chung).

  • Quy tắc đổi dấu.

Nếu đổi dấu cả tử và mẫu của một phân thức thì được một phân thức bằng phân thức đã cho.

A/B = -A/-B

  • Rút gọn phân thức.

Muốn rút gọn một phân thức ta có thể :

  • Phân tích cả tử và mẫu thành nhân tử (nếu cần) để tìm nhân ử chung.
  • Chia cả tử và mẫu cho nhân tử chung.
  • Quy đồng mẫu thức nhiều phân thức.

Quy đồng mẫu thức nhiều phân thức là biến đổi các phân thức đã cho thành những phân thức mới có cùng mẫu thức và lần lượt bằng các phân thức đã cho.

  • Phép cộng các phân thức đại số.

17.1. Cộng hai phân thức cùng mẫu thức.

Muốn cộng hai phân thức có cùng mẫu thức, ta cộng các tử thức với nhau và giữ nguyên mẫu thức.

17.2. Cộng hai phân thức có mẫu thức khác nhau.

Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

  • Phép trừ các phân thức đại số.

Muốn trừ phân thức A/B cho phân thức C/D, ta cộng A/B với phân thức đối của C/D.

A/B – C/D = A/B + (-C/D)

  • Phép nhân các phân thức đại số.

Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau.

A/B . C/D = A.C/B.D

  • Phép chia các phân thức đại số.

Muốn chia phân thức A/B cho phân thức C/D khác 0, nhân nhân A/B với phân thức nghịch đảo của C/D.

A/B : C/D = A/B . D/C với C/D  0

PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

  • Phương trình một ẩn.

Một phương trình với ẩn x có dạng A(x) = B(x), trong đó vế trái là A(x) và vế phải là B(x) là hai biểu thức của cùng một biến.

Một phương trình có thể có một nghiệm, hai nghiệm, ba nghiệm,… nhưng cũng có thể không có nghiệm nào hoặc có vô số nghiệm. Phương trình không có nghiệm nào được gọi là phương trình vô nghiệm.

  • Giải phương trình.

Tập hợp tất các các nghiệm của một phương trình được gọi là tập nghiệm của phương trình đó và thường kí hiệu bởi S.

Khi bài toán yêu cầu giải phương trình, ta phải tìm tất cả các nghiệm (hay tìm tập nghiệm) của phương trình đó.

  • Phương trình tương đương.

Hai phương trình tương đương là hai phương trình có cùng một tập nghiệm.

Ví dụ : x + 1 = 0 x = -1

  • Định nghĩa phương trình bậc nhất một ẩn.

Phương trình dạng ax + b = 0, với a và b là hai số đã cho và a 0, được gọi là phương trình bậc nhất một ẩn.

  • Hai quy tắc biến đổi phương trình.
  1. quy tắc chuyển vế.

Trong một phương trình, ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.

  1. b) quy tắc nhân với một số.

– Trong một phương trình, ta có thể nhân cả hai vế với cùng một số khác 0.

– Trong một phương trình, ta có thể chia cả hai vế cho cùng một số khác 0.

  1. Cách giải phương trình chưa ẩn ở mẫu.

Bước 1 : Tìm điều kiện xác định của phương trình.

Bước 2 : Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3 : Giải phương trình vừa nhận được.

Bước 4 : Kết luận. Trong các giá trị ẩn vừa tìm được ở bước 3, các giá trị thỏa mãn ĐKXĐ chính là nghiệm của phương trình đã cho.

  1. Giải bài toán bằng cách lập phương trình.

Bước 1 : Lập phương trình.

– Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.

– Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

– Lập phương trinh biểu thị mối quan hệ giữa các đại lượng.

Bước 2 : Giải phương trình.

Bước 3 : Trả lời : Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN.

  1. Các nguyên tắc cần nhớ về bất phương trình.

– Khi cộng cùng một số vào hai vế của bất đẳng thức ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

– Khi nhân cả hai vế của bất đẳng thức với cùng một số dương ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

– Khi nhân cả hai vế của bất đẳng thức với cùng một số âm ta được một bất đẳng thức mới ngược chiều với bất đẳng thức đã cho.

  1. Bất phương trình bậc nhất một ẩn.

Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b  0, ax + b  0) trong đó a và b là hai số đã cho, a 0, được gọi là bất phương trình bậc nhất một ẩn.

  1. Hai quy tắc biến đổi bất phương trình.
  2. Quy tắc chuyển vế.

Khi chuyển vế một hạng tử của bất phương trình từ vế này sang vế kia  ta phải đổi dấu hạng tử đó.

  1. b) Quy tắc nhân với một số.

Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải :

– Giữ nguyên chiều bất phương trình nếu số đó dương.

– Đổi chiều bất phương trình nếu số đó âm.

HÌNH HỌC

Chương 1 : Tứ Giác

  1. Tứ giác.

– Tứ giác ABCD là hình gồm bốn đoạn thẳng AB, BC, CD, DA, trong đó bất ki hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.

– Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tứ giác.

– Tổng các góc trong một tứ giác bằng 360 độ.

  1. Hình thang.

– Hình thang là tứ giác có hai cạnh đối song song.

– Hình thang vuông là hình thang có một góc vuông.

  1. Hình thang cân

– Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.

Tính chất :

– Trong hình thang cân, hai cạnh bên bằng nhau.

– Trong hình thang cân, hai đường chéo bằng nhau.

– Hình thang có hai đường chéo bằng  nhau là hình thang cân.

Dấu hiệu nhận biết hình thang cân.

– Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.

– Hình thang có hai đương chéo bằng nhau là hình thang cân.

  1. Đường trung bình của tam giác, hình thang.
  2. Đường trung bình của tam giác.

– Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba.

– Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

  1. b) Đường trung bình của hình thang.

– Đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm của cạnh bên thứ hai.

– Đường trung bình của hình thang thì song song với hai đáy và bằng nửa tổng hai đáy.

  1. Hai điểm đối xứng qua một đường thẳng.

Hai điểm gọi là đối xứng với nhau qua đường thẳng d nếu d là đường trung trực của đoạn thẳng nối hai điểm đó.

  1. Hai hình đối xứng qua một đường thẳng.

– Hai hình gọi là đối xứng với nhau qua đường thẳng d nếu mỗi điểm thuộc đường hình này đối xứng với mỗi điểm thuộc hình kia qua đường thẳng d và ngược lại.

– Nếu hai đường thẳng (góc, tam giác) đối xứng với nhau qua một đường thẳng thì chùng bằng nhau.

  1. Hình có trục đối xứng.

– Đường thẳng d gọi là trục đối xứng của hình H nếu điểm đối xứng với mỗi điểm thuộc hình H qua đường thẳng d cũng thuộc hình H.

– Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó.

  1. Hình bình hành.
  2. Tính chất.

Trong hình bình hành :

– Các cạnh đối bằng nhau.

– Các góc đối bằng nhau.

– Hai đường chéo cắt nhau tại trung điểm của mỗi đường.

  1. b) Dấu hiệu nhận biết.

– Tứ giác có các cạnh đối song song là hình bình hành.

– Tứ giác có các cạnh đối bằng nhau là hình bình hành.

– Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.

– Tứ giác có các góc đối bằng nhau là hình bình hành.

– Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.

  1. Hai điểm đối xứng qua một điểm.

Hai điểm đối xứng với nhau qua điểm O nếu O là trung điểm của đoạn thẳng nối hai điểm đó.

  1. Hai hình đối xứng qua một điểm.

– Hai hình gọi là đối xứng với nhau qua điểm O nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua điểm O và ngược lại.

– Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một điểm thì chúng bằng nhau.

  1. Hình có đối xứng tâm.

Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.

  1. Hình chữ nhật.
  2. Tính chất.

– Hình chữ nhật là tứ giác có bốn góc vuông.

– Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.

  1. b) Dấu hiệu nhận biết hình chữ nhật.

– Tứ giác có ba góc vuông là hình chữ nhật.

– Hình thang cân có một góc vuông là hình chữ nhật.

– Hình bình hành có một góc vuông là hình chữ nhật.

– Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.

  1. Tam giác vuông.

– Trong một tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

– Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông.

  1. Khoảng cách giữa hai đường thẳng song song.

– Khoảng cách giữa hai đường thẳng song song là khoảng cách từ một điểm tùy ý trên đường thẳng này đến đường thẳng kia.

  1. Hình thoi.

– Hình thoi là tứ giác có bốn cạnh bằng nhau.

  1. tình chất.

Trong hình thoi :

– Hai đường chéo vuông góc với nhau.

– Hai đường chéo là các đường phân giác của các góc của hình thoi.

  1. b) Dấu hiệu nhận biết hình thoi.

– Tứ giác có bốn cạnh bằng nhau là hình thoi.

– Hình bình hành có hai cạnh bằng nhau là hình thoi.

– Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.

– Hình bình hanh có một đường chéo là đường phân giác của một góc là hình thoi.

  1. Hình vuông.
  2. a) Tính chất.

– Hình vuông là tứ giác có bốn góc vuông và bốn cạnh bằng nhau.

– Hình vuông có các tính chất của hình chữ nhật và hình thoi.

  1. b) Dấu hiệu nhận biết hình vuông.

– Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.

– Hình chữ nhật có hai đường chéo vuông góc với nhau là hình vuông.

– Hình chữ nhật có một đường chéo là được phân giác của một góc là hình vuông.

– Hình thoi có một góc vuông là hình vuông.

– Hình thoi có hai đường chéo bằng nhau là hình vuông.

TAM GIAC ĐỒNG DẠNG

  1. Định lý Ta – lét trong tam giác.

Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

  1. Định lý đảo và hệ quả của định lý Ta – let.
  2. Định lý Ta – lét đảo.

Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

  1. b) Hệ quả của định lý Ta – let.

Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.

  1. Tính chất đường phân giác trong tam giác.

Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề của đoạn ấy.

  1. Tam giác đồng dạng.

Tam giác A’B’C’ gọi là đồng dạng với tam giác  ABC nếu :

A’ = A ; B’ = B ; C’ = C ;

A’B/AB = B’C’/BC = C’A’/CA

– Nếu một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho.

  1. Ba trường hợp đồng dạng của tam giác.
  2. trường hợp thứ nhất (c.c.c)

Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng với nhau.

  1. b) trường hợp thứ hai (c.g.c)

Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đồng dạng với nhau.

  1. c) trường hợp thứ ba (g.g.g)

Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

  1. Các trường hợp đồng dạng của tam giác vuông.

Hai tam giác vuông đồng dạng với nhau nếu :

– Tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia.

– Tam giác vuông này có hai cạnh góc vuông tỉ lệ với hai cạnh góc vuông của tam giác vuông kia.

– Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyện và cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.

2
27 tháng 4 2018

Thank bn nha mot mk kiem tra toan 8 do. Chuc bn hoc tot

1 tháng 9 2019

tài liệu ôn tập à, thank

Câu 38.  Khẳng định nào sau đây là đúng ?  A. Hình thang có 2 cạnh bên bằng nhau là hình thang cân.  B. Tứ giác có hai cạnh song song là hình bình hành.  C. Hình bình hành có 2 đường chéo bằng nhau là hình chữ nhật.  D. Hình thang có 1 góc vuông là hình chữ nhật.Câu 39. Cho hình 1, biết rằng AB // CD // EF // GH. Số đo x, y trong hình 1 là:A. x = 4 cm, y = 8 cm                                                 B.  x = 7cm, y = 14 cm              C. x = 12 cm, y...
Đọc tiếp

Câu 38.  Khẳng định nào sau đây là đúng ?

  A. Hình thang có 2 cạnh bên bằng nhau là hình thang cân.

  B. Tứ giác có hai cạnh song song là hình bình hành.

  C. Hình bình hành có 2 đường chéo bằng nhau là hình chữ nhật.

  D. Hình thang có 1 góc vuông là hình chữ nhật.

Câu 39. Cho hình 1, biết rằng AB // CD // EF // GH. Số đo x, y trong hình 1 là:

A. x = 4 cm, y = 8 cm                                                 B.  x = 7cm, y = 14 cm              

C. x = 12 cm, y = 20 cm                                            D. x = 8 cm, y = 10 cm

Câu 40: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q theo thứ tự là trung điểm của AD, AF, EF, ED. ΔABC có điều kiện gì thì MNPQ là hình chữ nhật?

A.Tam giác ABC cân tại A

B. Tam giác ABC cân tại B

C.Tam giác ABC cân tại C

D. Tam giác ABC vuông tại A.

1
23 tháng 11 2021

38C

39C

40D

23 tháng 11 2021

D

18 tháng 12 2021

Câu 1: B

Câu 2: B